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An example: quantum cohomology for CP2

▶ H∗(CP2) = C[h]/⟨h3⟩

▶ h ∪ h = h2 ↭ “two lines intersect in a unique point”

▶ h2 ∗ h2 = q h↭

“two points have a unique intersecting line”

▶ “Quantum cohomology is an extension of cohomology
counting intersecting curves instead of points”

▶ Extension: considering degree-0 curves gives points

▶ qH∗(CP2) = C[h, q]/⟨h3 − q⟩
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An example: mirror symmetry for CP2

▶ qH∗(CP2) = C[h, q]/⟨h3 − q⟩

▶ Consider Wq : (C∗)2 → C : (a1, a2) 7→ a1 + a2 + q 1
a1a2

▶ Then C[(C∗)2 × C∗
q ] = C[a±1

1 , a±1
2 , q±1]

▶ And ⟨∂Wq⟩ = ⟨1− q 1
a21a2

, 1− q 1
a1a22

⟩
▶ But ⟨∂Wq⟩ ⊃ ⟨a1 − a2⟩
▶ So C[(C∗)2 × C∗

q ]/⟨∂Wq⟩ ∼= C[a±1, q±1]/⟨1− q 1
a3
⟩

∼= qH∗(CP2)[q−1]

Landau-Ginzburg model for X

A pair (X∨,Wq : X
∨ → C) such that C[X∨ ×C∗

q ]/⟨∂Wq⟩ ∼= qH∗(X)[q−1]

(Assuming the rank of H2(X, Z) is 1.)
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LG-models for homogeneous spaces

▶ Homogeneous space: projective variety X with transitive action of a
linear algebraic group G

▶ We can write X = G/P , P ⊂ G is called parabolic

▶ Rietsch (2008) gives an LG-model (X∨
Lie,WLie) for general G/P

▶ This model is most conveniently described on Z∨
P
∼= X∨

Lie × C∗
q

▶ Z∨
P ⊂ G∨ the Langlands dual group of G

▶ G∨ is the unique group having the coroots of G as roots
and the cocharacters of G as characters
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An example: Lie-theoretic mirror for CP2

▶ CP2 = SL3/P1, where P1 =
{ ∗ ∗ ∗

0 ∗ ∗
0 ∗ ∗

} ∩ SL3

▶ SL3
∨ = PSL3 = {Z3M | M ∈ SL3}, for Z3 = {1, ζ = e2πi/3, ζ2}

▶ Z∨
P = T∨U∨

−w0 ∩ U∨
+T

PwPU
P
−

▶ Fact: z ∈ Z∨
P written uniquely as z = u+twPu−

▶ In fact: u+ is fixed by u− and t

▶ U∨
+T

PwPU
P
− ∋ z = Z3

 1 b1 b3
0 1 b2
0 0 1

µ2 0 0

0 µ−1 0

0 0 µ−1

 1 0 0
0 0 −1
0 1 0

 1 0 0
a1 1 0
0 a2 1


▶ z ∈ T∨U∨

−w0 ⇒ b2 = 0, b3 = −µ3

a1
, b1 = − µ3

a1a2

▶ Consider (e∨i )
∗ :

 1 b1 b3
0 1 b2
0 0 1

 7→ bi and (f∨
i )

∗ :
 1 0 0
a1 1 0
a3 a2 1

 7→ ai

▶ For z = u+twPu− we find (f∨
i )

∗(u−) = ai,

(e∨1 )
∗(u−1

+ ) = q 1
a1a2

, (e∨2 )
∗(u−1

+ ) = 0

▶ WZ∨
P
(z) =

∑2
i=1(e

∨
i )

∗(u−1
+ ) + (f∨

i )
∗(u−)

= a1 + a2 + q 1
a1a2
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LG-models for homogeneous spaces (2)

▶ Z∨
P = T∨U∨

−w0 ∩ U∨
+T

PwPU
∨
−

WZ∨
P
(z) =

∑n
i=1(e

∨
i )

∗(u−1
+ ) + (f∨

i )
∗(u−) (*)

▶ For CP2: WZ∨
P
(z) = a1 + a2 + q 1

a1a2
▶ End of story

. . . or is it?

▶ For CP2, Z∨
P is an algebraic torus with coordinates a1, a2, µ ∈ C∗

▶ Not true in general; we only have (*)

▶ In other words: we do not have “nice” coordinates on Z∨
P

▶ Enter: cominuscule homogeneous spaces G/Pk

▶ These have natural projective coordinates on P∨
k \G∨

▶ Called (generalized) Plücker coordinates

▶ Geometric Satake correspondence: the generators of H∗(G/Pk)
correspond one-to-one with the Plücker coordinates on P∨

k \G∨

▶ Advantage: simplify translation between qH∗(X) and C[X∨]

▶ Goal: reformulate (Z∨
P ,WZ∨

P
) in these coordinates

▶ These reformulated models are called canonical LG-models
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k \G∨

▶ Called (generalized) Plücker coordinates

▶ Geometric Satake correspondence: the generators of H∗(G/Pk)
correspond one-to-one with the Plücker coordinates on P∨

k \G∨

▶ Advantage: simplify translation between qH∗(X) and C[X∨]

▶ Goal: reformulate (Z∨
P ,WZ∨

P
) in these coordinates

▶ These reformulated models are called canonical LG-models
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Example: the canonical model for CP2 = SL3/P1

▶ P1\PSL3 has coordinates p0, p1, p2

▶ X∨
can = {pi ̸= 0} ⊂ P1\PSL3

▶ Wcan = p1
p0

+ p2
p1

+ q p0
p2

▶ ⟨∂Wcan⟩ = ⟨q 1
p2

− p1
p02

, 1
p0

− p2
p12

, 1
p1

− q p0
p22

⟩

= ⟨p1p2 − q p20, p1
2 − p0p2, p2

2 − q p0p1⟩

▶ Thus C[X∨ × C∗
q ]/⟨∂Wcan⟩ ∼= qH∗(CP2)[q−1] through the map:

p0 7→ 1, p1 7→ h and p2 7→ h2

▶ For u− =
 1 0 0
a1 1 0
0 a2 1

, we find [p0 : p1 : p2](P1u−) = [1 : a1 : a1a2],

Wcan(P1u−) =
a1
1 + a1a2

a1
+ q 1

a1a2

= a1 + a2 + q 1
a1a2
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Canonical LG-models for cominuscule G/P

▶ What are cominuscule homogeneous spaces?

▶ Gr(k, n+ 1) = SLn+1/Pk, type An

▶ Qd = Spind+2/P1, type Bn (d+ 2 = 2n+ 1) or Dn (d+ 2 = 2n)
▶ LG(n, 2n) = Sp2n/Pn, type Cn

▶ OG(n, 2n) = Spin2n/Pn, type Dn

▶ E6/P1
∼= E6/P6 and E7/P7

> <

An Bn Cn Dn E6 E7

Examples

CP2 = SL3/P1: Wcan = p1
p0

+ p2
p1

+ q p0
p2

Gr(2, 4) = SL4/P2: Wcan = p1
p0

+
p′2
p1

+ p3
p2

+ p3
p′2

+ q p1
p4

Q3 = Spin5/P1: Wcan = p1
p0

+ p22

p1p2−p0p3
+ q p1

p3

LG(3, 6) = Sp5/P1: Wcan = p1
p0

+
p2p′3−p0p5
p1p3−p0p4

+ p4p5−p3p6
p′3p5−p2p6

+ q
p′3
p6

E6/P6 has a cubic term, and E7/P7 a quartic term
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Summary and more info

▶ Small quantum cohomology: “counting intersecting curves”

▶ LG-models (X∨,Wq) satisfying C[X∨ × C∗
q ]/⟨∂Wq⟩ ∼= qH∗(X)[q−1]

▶ Two LG-models for homogeneous spaces:
▶ Lie-theoretic model: any G/P , but abstract
▶ Canonical model: correspondence, but only comin. and type-dependent

▶ More information?
▶ More details about the quantum cohomology
▶ A third LG-model: Laurent polynomial, type-independent

& combinatorial, but only cominuscule & local (+sketch of proof)
▶ How to define Plücker coordinates?
▶ How to construct the canonical models?

▶ Related: cluster algebra structures for C[X∨
can]
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Laurent polynomial LG-models

Theorem

For any cominuscule homogeneous space G/Pk of dimension d, the
restriction WZ◦

P
of WZ∨

P
to Z◦

P (∼= (C∗)d) can be written as

WZ◦
P
(z) = a1 + a2 + . . .+ ad + q

r(ai)

a1a2 · · · ad
,

for a (known) homogeneous polynomial r.

▶ How to find r?

▶ Let w0 ∈ W and wP ∈ WP be the longest elements
▶ Let wP , w′′ be the minimal representatives of w0WP , wP skWP

▶ Let w′ = wP (w′′)−1,

and fix a reduced expression for wP

The terms of r correspond one-to-one with the reduced subexpressions for
w′ in the fixed expression for wP .

Example: for CP2 we have w′ = 1.
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How to find the terms of r (conveniently)?

▶ We can associate a quiver to wP = sr1sr2 · · · srℓ [Perrin, 2007]

▶ A subexpression for w′ corresponds to a subset of vertices

▶ We can find all these subsets using “moves” on a given one

Example: Gr(4, 6) = SL6/P4 (type A5)

wP = (s2s3s4s5)(s1s2s3s4), w
′ = s2s3s4
1 2 3 4 5

1

2

3

4

8

7

6

5

r(ai) = a1a2a3 + a1a2a8 + a1a7a8 + a6a7a8
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Summary and more info

▶ Small quantum cohomology: “counting intersecting curves”

▶ LG-models (X∨,Wq) satisfying C[X∨ × C∗
q ]/⟨∂Wq⟩ ∼= qH∗(X)[q−1]

▶ Two LG-models for homogeneous spaces:
▶ Lie-theoretic model: any G/P , but abstract
▶ Canonical model: correspondence, but only comin. and type-dependent

▶ More information?
▶ More details about the quantum cohomology
▶ A third LG-model: Laurent polynomial, type-independent

& combinatorial, but only cominuscule & local (+sketch of proof)
▶ How to define Plücker coordinates?
▶ How to construct the canonical models?

▶ Related: cluster algebra structures for C[X∨
can]
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Sketch of the proof of the Laurent polynomial model

▶ We have WLie(z) =
∑n

i=1(e
∨
i )

∗(u+) + (f∨
i )

∗(u−)

▶ We are working on Z◦
P ⊂ Z∨

P where
∑

i(f
∨
i )

∗(u−) =
∑

i ai

▶ We can show in general that (e∨i )
∗(u+) = 0 for k ̸= i

▶ Next, we note that (e∨k )
∗(u+) = ⟨u+f∨

k · v+k , v
+
k ⟩,

where v+k ∈ V (ω∨
k ) is a highest weight vector

and ⟨·, v+k ⟩ denotes the coefficient after projection to Cv+k
▶ Now, u+ is uniquely determined by (u−, t) in z = u+twPu−,

so we can rewrite (e∨k )
∗(u+) in terms of (u−, t)

▶ Using that V (ω∨
k ) is a minuscule representation, we can exactly

compute this contribution, as its structure is well-known and
expressed type-independently
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Summary and more info

▶ Small quantum cohomology: “counting intersecting curves”

▶ LG-models (X∨,Wq) satisfying C[X∨ × C∗
q ]/⟨∂Wq⟩ ∼= qH∗(X)[q−1]

▶ Two LG-models for homogeneous spaces:
▶ Lie-theoretic model: any G/P , but abstract
▶ Canonical model: correspondence, but only comin. and type-dependent

▶ More information?
▶ More details about the quantum cohomology
▶ A third LG-model: Laurent polynomial, type-independent

& combinatorial, but only cominuscule & local (+sketch of proof)
▶ How to define Plücker coordinates?
▶ How to construct the canonical models?

▶ Related: cluster algebra structures for C[X∨
can]
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Definition of Plücker coordinates

▶ These are naturally defined on P∨\G∨

▶ Consider the fundamental weight representation V (ω∨
k )

▶ It has highest weight ω∨
k , and lowest weight w0 · ω∨

k
▶ Then V (−w0 · ω∨

k ) has highest weight −w0 · ω∨
k and lowest −ω∨

k
▶ So V (−w0 · ω∨

k )
∗ has highest weight ω∨

k and lowest w0 · ω∨
k

▶ (Note that V (−w0 · ω∨
k )

∗ ∼= V (ω∨
k )

op)
▶ Let v∗0 be a highest weight vector, then Cv∗0 · P∨ = Cv∗0
▶ So we obtain an embedding P∨\G∨ ↪→ PV (−w0 · ω∨

k )
∗

▶ For any weight vector vi ∈ V (−w0 · ω∨
k ), we get the map:

pi : P
∨g 7→ v∗0(g · vi)

▶ If G/Pk cominuscule, then V (ω∨
k ) and V (−w0 · ω∨

k )
∗ are minuscule

▶ Minimal representatives of cosets of WP ↔ “weight basis”

▶ Every weight space is extremal
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k , and lowest weight w0 · ω∨

k
▶ Then V (−w0 · ω∨

k ) has highest weight −w0 · ω∨
k and lowest −ω∨

k
▶ So V (−w0 · ω∨

k )
∗ has highest weight ω∨

k and lowest w0 · ω∨
k

▶ (Note that V (−w0 · ω∨
k )

∗ ∼= V (ω∨
k )

op)
▶ Let v∗0 be a highest weight vector, then Cv∗0 · P∨ = Cv∗0
▶ So we obtain an embedding P∨\G∨ ↪→ PV (−w0 · ω∨

k )
∗

▶ For any weight vector vi ∈ V (−w0 · ω∨
k ), we get the map:

pi : P
∨g 7→ v∗0(g · vi)

▶ If G/Pk cominuscule, then V (ω∨
k ) and V (−w0 · ω∨

k )
∗ are minuscule

▶ Minimal representatives of cosets of WP ↔ “weight basis”

▶ Every weight space is extremal
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Definition of Plücker coordinates

▶ These are naturally defined on P∨\G∨

▶ Consider the fundamental weight representation V (ω∨
k )

▶ It has highest weight ω∨
k , and lowest weight w0 · ω∨

k
▶ Then V (−w0 · ω∨

k ) has highest weight −w0 · ω∨
k and lowest −ω∨

k
▶ So V (−w0 · ω∨

k )
∗ has highest weight ω∨

k and lowest w0 · ω∨
k

▶ (Note that V (−w0 · ω∨
k )

∗ ∼= V (ω∨
k )

op)
▶ Let v∗0 be a highest weight vector, then Cv∗0 · P∨ = Cv∗0
▶ So we obtain an embedding P∨\G∨ ↪→ PV (−w0 · ω∨

k )
∗

▶ For any weight vector vi ∈ V (−w0 · ω∨
k ), we get the map:

pi : P
∨g 7→ v∗0(g · vi)

▶ If G/Pk cominuscule, then V (ω∨
k ) and V (−w0 · ω∨

k )
∗ are minuscule

▶ Minimal representatives of cosets of WP ↔ “weight basis”

▶ Every weight space is extremal

Peter Spacek (T.U. Chemnitz) LG-models for cominuscule hom. spaces 13 July 2022 15 / 9



Definition of Plücker coordinates
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Summary and more info

▶ Small quantum cohomology: “counting intersecting curves”

▶ LG-models (X∨,Wq) satisfying C[X∨ × C∗
q ]/⟨∂Wq⟩ ∼= qH∗(X)[q−1]

▶ Two LG-models for homogeneous spaces:
▶ Lie-theoretic model: any G/P , but abstract
▶ Canonical model: correspondence, but only comin. and type-dependent

▶ More information?
▶ More details about the quantum cohomology
▶ A third LG-model: Laurent polynomial, type-independent

& combinatorial, but only cominuscule & local (+sketch of proof)
▶ How to define Plücker coordinates?
▶ How to construct the canonical models?

▶ Related: cluster algebra structures for C[X∨
can]
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Constructing canonical LG-models

▶ We want an LG-model (X∨
can,Wcan) with X∨

can ⊂ P∨
k \G∨

and Wcan : X∨
can × C∗ → C expressed in Plücker coordinates

▶ Preferably, (X∨
can,Wcan) ∼= (X∨

Lie,WLie)

▶ So far, no type-independent method is known
▶ There is a general strategy for the case-by-case approach

▶ Recall z ∈ Z∨
P uniquely determined by (u−, t) ∈ UP

− × TP ∼= UP
− × C∗

▶ Since Z∨
P
∼= X∨

Lie × C∗, we find X∨
Lie

∼= UP
−

▶ Geiß-Leclerc-Schroër (2011) gave a presentation of C[UP
− ]

▶ Need to re-express this presentation in Plücker coordinates
▶ This gives X∨

can ⊂ P∨
k \G∨

▶ Next, WLie restricted to Z◦
P is Laurent polynomial

▶ Find a Plücker coordinate expression ⇝ Wcan

▶ By construction: (X∨
can,Wcan) ∼= (X∨

Lie,WLie)
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▶ Find a Plücker coordinate expression ⇝ Wcan

▶ By construction: (X∨
can,Wcan) ∼= (X∨

Lie,WLie)

Peter Spacek (T.U. Chemnitz) LG-models for cominuscule hom. spaces 13 July 2022 17 / 9



Constructing canonical LG-models

▶ We want an LG-model (X∨
can,Wcan) with X∨

can ⊂ P∨
k \G∨

and Wcan : X∨
can × C∗ → C expressed in Plücker coordinates
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▶ Preferably, (X∨
can,Wcan) ∼= (X∨

Lie,WLie)

▶ So far, no type-independent method is known
▶ There is a general strategy for the case-by-case approach

▶ Recall z ∈ Z∨
P uniquely determined by (u−, t) ∈ UP

− × TP ∼= UP
− × C∗

▶ Since Z∨
P
∼= X∨

Lie × C∗, we find X∨
Lie

∼= UP
−
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Summary and more info

▶ Small quantum cohomology: “counting intersecting curves”

▶ LG-models (X∨,Wq) satisfying C[X∨ × C∗
q ]/⟨∂Wq⟩ ∼= qH∗(X)[q−1]

▶ Two LG-models for homogeneous spaces:
▶ Lie-theoretic model: any G/P , but abstract
▶ Canonical model: correspondence, but only comin. and type-dependent

▶ More information?
▶ More details about the quantum cohomology
▶ A third LG-model: Laurent polynomial, type-independent

& combinatorial, but only cominuscule & local (+sketch of proof)
▶ How to define Plücker coordinates?
▶ How to construct the canonical models?

▶ Related: cluster algebra structures for C[X∨
can]
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Small quantum cohomology

▶
(
H∗(X),∪

)
⇝

(
qH∗(X), ∗

)

qH∗(X)/⟨q⟩ ∼= H∗(X) and ∗ ≡ ∪ mod q

▶ Consider CPn, so H∗(CPn) ∼= C[h]/⟨hn+1⟩, with hi ∪ hj = 1 · hi+j

1 =

∫
CPn

hi ∪ hj ∪ hn−i−j = ⟨hi · hj · hn−i−j⟩0

is the number of points intersecting hi, hj and hn−i−j

▶ Note that ⟨hi · hj · hn−k⟩0 = 0 for k ̸= i+ j,

so hi ∪ hj =
∑n

k=0⟨hi · hj · hn−k⟩0 · hk

▶ Write ⟨α · β · γ⟩k for the number of degree-k curves intersecting
α, β and γ,

this is called a Gromov-Witten invariant.

hi ∗ hj =
∞∑
d=0

n∑
k=0

⟨hi · hj · hn−k⟩d hk qd
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1 =

∫
CPn

hi ∪ hj ∪ hn−i−j = ⟨hi · hj · hn−i−j⟩0

is the number of points intersecting hi, hj and hn−i−j

▶ Note that ⟨hi · hj · hn−k⟩0 = 0 for k ̸= i+ j,

so hi ∪ hj =
∑n

k=0⟨hi · hj · hn−k⟩0 · hk

▶ Write ⟨α · β · γ⟩k for the number of degree-k curves intersecting
α, β and γ,

this is called a Gromov-Witten invariant.

hi ∗ hj =
∞∑
d=0

n∑
k=0

⟨hi · hj · hn−k⟩d hk qd
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Summary and more info

▶ Small quantum cohomology: “counting intersecting curves”

▶ LG-models (X∨,Wq) satisfying C[X∨ × C∗
q ]/⟨∂Wq⟩ ∼= qH∗(X)[q−1]

▶ Two LG-models for homogeneous spaces:
▶ Lie-theoretic model: any G/P , but abstract
▶ Canonical model: correspondence, but only comin. and type-dependent

▶ More information?
▶ More details about the quantum cohomology
▶ A third LG-model: Laurent polynomial, type-independent

& combinatorial, but only cominuscule & local (+sketch of proof)
▶ How to define Plücker coordinates?
▶ How to construct the canonical models?

▶ Related: cluster algebra structures for C[X∨
can]
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Gromov-Witten invariants

▶ Gromov-Witten invariants ⟨γ1 · · · γn⟩β:

for β ∈ H2(X) and γk ∈ H∗(X),

⟨γ1 · · · γn⟩β =

∫
M0,n(X,β)

ev∗1(γ1) ∪ . . . ∪ ev∗n(γn),

where Mn,β is the moduli space of tuples s = (C, p1, . . . , pn;µ), with
▶ C a projective, connected nodal curve of genus 0 and p1, . . . , pn ∈ C
▶ µ : C → X a stable map with µ∗([C]) = β;

and where evi : Mn,β → X maps (C, p1, . . . , pn;µ) to µ(pi).

▶ Given Y ⊂ X, evi(s) ∩ Y ̸= ∅ when Y ∋ µ(pi);
so ev∗i ([Y ]) is (the class of) the locus of curves with µ(pi) ∈ Y ;
so ev∗1([Y1]) ∪ . . . ∪ ev∗n([Yn]) is the locus of curves such that
µ(pi) ∈ Yi for each i;
so Iβ([Y1] · · · [Yn]) counts the number of curves meeting Yi in µ(pi).
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Summary and more info

▶ Small quantum cohomology: “counting intersecting curves”

▶ LG-models (X∨,Wq) satisfying C[X∨ × C∗
q ]/⟨∂Wq⟩ ∼= qH∗(X)[q−1]

▶ Two LG-models for homogeneous spaces:
▶ Lie-theoretic model: any G/P , but abstract
▶ Canonical model: correspondence, but only comin. and type-dependent

▶ More information?
▶ More details about the quantum cohomology
▶ A third LG-model: Laurent polynomial, type-independent

& combinatorial, but only cominuscule & local (+sketch of proof)
▶ How to define Plücker coordinates?
▶ How to construct the canonical models?

▶ Related: cluster algebra structures for C[X∨
can]
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Cluster algebra structure of C[X∨
can]

▶ Example: Q6 = Spin8/P1 of type D4

▶ C[X∨
can] = C[p±1

0 , p1, p2, p
±1
3 , (p′3)

±1, p4, p5, p
±1
6 ][(p1p5 − p0p6)

−1]

▶ C[X∨
can] has a cluster algebra structure:

▶ µ(p1) =
1
p1

(
p0p6 + (p1p5 − p0p6)

)
= p5

▶ Frozen variables are denominators of
Wcan = p1

p0
+ p2p5

p1p5−p0p6
+ p4

p3
+ p4

p′3
+ q p1

p6

▶ Requires a “Plücker relation”
p3p

′
3 − p2p4 + p1p5 − p0p6 = 0

▶ µ(p2) =
1
p2

(
(p1p5 − p0p6) + p3p

′
3

)

= p4

▶ We constructed cluster structures for
the exceptional family

1 2
3

4
p′3

p6

p1p5 − p0p6

p3 p′3

p2

p1

p0
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▶ For E6/P6, the mirror has the following cluster structure:

1
2

3 4 5 6
p8 p16

p16

q20

q24

q12q16

p8 q15

q8 q10

q′8 p′′5

p′4 p′′4

p3

p2

p1
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Conjectural construction of cluster structure

▶ Example: Q6 = G/P for G of type D4:
1 2

3

4

▶ wP = s1s2(s3s4)s2s1 gives a quiver:

1 2
3

4
p′3

▶ Quiver due to Perrin (2007)

▶ Gives basis of cohomology
▶ Calculates Poincaré duality

▶ Conjectural construction:

▶ Draw arrows up in the columns
▶ For every “quadric” subdiagram

si1 · · · sir (sj1sj2)sir · · · si1
move head of sit → sit+1 to
second occurrence of sit+1

▶ Freeze last occurrence of each si
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▶ Conjectural construction:

▶ Draw arrows up in the columns
▶ For every “quadric” subdiagram

si1 · · · sir (sj1sj2)sir · · · si1
move head of sit → sit+1 to
second occurrence of sit+1

▶ Freeze last occurrence of each si

Peter Spacek (T.U. Chemnitz) LG-models for cominuscule hom. spaces 13 July 2022 25 / 9



Summary and more info

▶ Small quantum cohomology: “counting intersecting curves”

▶ LG-models (X∨,Wq) satisfying C[X∨ × C∗
q ]/⟨∂Wq⟩ ∼= qH∗(X)[q−1]

▶ Two LG-models for homogeneous spaces:
▶ Lie-theoretic model: any G/P , but abstract
▶ Canonical model: correspondence, but only comin. and type-dependent

▶ More information?
▶ More details about the quantum cohomology
▶ A third LG-model: Laurent polynomial, type-independent

& combinatorial, but only cominuscule & local (+sketch of proof)
▶ How to define Plücker coordinates?
▶ How to construct the canonical models?

▶ Related: cluster algebra structures for C[X∨
can]
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