Landau-Ginzburg models for cominuscule homogeneous spaces

Peter Spacek joint work with Charles Wang

TECHNISCHE UNIVERSITÄT CHEMNITZ

13 July 2022

An example: quantum cohomology for \mathbb{CP}^2

$\blacktriangleright \ H^*(\mathbb{CP}^2) = \mathbb{C}[h]/\langle h^3 \rangle$

- $\blacktriangleright \ H^*(\mathbb{CP}^2) = \mathbb{C}[h]/\langle h^3 \rangle$
- $h \cup h = h^2 \iff$ "two lines intersect in a unique point"

- $\blacktriangleright \ H^*(\mathbb{CP}^2) = \mathbb{C}[h]/\langle h^3 \rangle$
- ▶ $h \cup h = h^2 \iff$ "two lines intersect in a unique point" "two points have a unique intersecting line"

- $\blacktriangleright \ H^*(\mathbb{CP}^2) = \mathbb{C}[h]/\langle h^3 \rangle$
- ▶ $h \cup h = h^2$ \iff "two lines intersect in a unique point"
- ▶ $h^2 * h^2 = q h \iff$ "two points have a unique intersecting line"

- $\blacktriangleright \ H^*(\mathbb{CP}^2) = \mathbb{C}[h]/\langle h^3 \rangle$
- ▶ $h \cup h = h^2 \iff$ "two lines intersect in a unique point"
- ▶ $h^2 * h^2 = q h \iff$ "two points have a unique intersecting line"
- "Quantum cohomology is an extension of cohomology counting intersecting curves instead of points"

- $\blacktriangleright \ H^*(\mathbb{CP}^2) = \mathbb{C}[h]/\langle h^3 \rangle$
- ▶ $h \cup h = h^2$ \iff "two lines intersect in a unique point"
- ▶ $h^2 * h^2 = q h \iff$ "two points have a unique intersecting line"
- "Quantum cohomology is an extension of cohomology counting intersecting curves instead of points"
- Extension: considering degree-0 curves gives points

- $\blacktriangleright \ H^*(\mathbb{CP}^2) = \mathbb{C}[h]/\langle h^3 \rangle$
- ▶ $h \cup h = h^2 \iff$ "two lines intersect in a unique point"
- ▶ $h^2 * h^2 = q h \iff$ "two points have a unique intersecting line"
- "Quantum cohomology is an extension of cohomology counting intersecting curves instead of points"
- ► Extension: considering degree-0 curves gives points

$$\blacktriangleright \ qH^*(\mathbb{CP}^2) = \mathbb{C}[h,q]/\langle h^3 - q \rangle$$

$$\blacktriangleright qH^*(\mathbb{CP}^2) = \mathbb{C}[h,q]/\langle h^3 - q \rangle$$

$$\blacktriangleright qH^*(\mathbb{CP}^2) = \mathbb{C}[h,q]/\langle h^3 - q \rangle$$

• Consider
$$\mathcal{W}_q : (\mathbb{C}^*)^2 \to \mathbb{C} : (a_1, a_2) \mapsto a_1 + a_2 + q \frac{1}{a_1 a_2}$$

$$\blacktriangleright qH^*(\mathbb{CP}^2) = \mathbb{C}[h,q]/\langle h^3 - q \rangle$$

- Consider $\mathcal{W}_q : (\mathbb{C}^*)^2 \to \mathbb{C} : (a_1, a_2) \mapsto a_1 + a_2 + q \frac{1}{a_1 a_2}$
- Then $\mathbb{C}[(\mathbb{C}^*)^2 \times \mathbb{C}_q^*] = \mathbb{C}[a_1^{\pm 1}, a_2^{\pm 1}, q^{\pm 1}]$

$$\blacktriangleright qH^*(\mathbb{CP}^2) = \mathbb{C}[h,q]/\langle h^3 - q \rangle$$

• Consider $\mathcal{W}_q : (\mathbb{C}^*)^2 \to \mathbb{C} : (a_1, a_2) \mapsto a_1 + a_2 + q \frac{1}{a_1 a_2}$

▶ Then
$$\mathbb{C}[(\mathbb{C}^*)^2 \times \mathbb{C}_q^*] = \mathbb{C}[a_1^{\pm 1}, a_2^{\pm 1}, q^{\pm 1}]$$

• And
$$\langle \partial \mathcal{W}_q \rangle = \langle 1 - q \frac{1}{a_1^2 a_2}, 1 - q \frac{1}{a_1 a_2^2} \rangle$$

• But
$$\langle \partial \mathcal{W}_q \rangle \supset \langle a_1 - a_2 \rangle$$

$$\begin{array}{l} \bullet \ qH^*(\mathbb{CP}^2) = \mathbb{C}[h,q]/\langle h^3 - q \rangle \\ \bullet \ \text{Consider} \ \mathcal{W}_q : (\mathbb{C}^*)^2 \to \mathbb{C} : (a_1,a_2) \mapsto a_1 + a_2 + q \frac{1}{a_1 a_2} \\ \bullet \ \text{Then} \ \mathbb{C}[(\mathbb{C}^*)^2 \times \mathbb{C}_q^*] = \mathbb{C}[a_1^{\pm 1}, a_2^{\pm 1}, q^{\pm 1}] \\ \bullet \ \text{And} \ \langle \partial \mathcal{W}_q \rangle = \langle 1 - q \frac{1}{a_1^2 a_2}, 1 - q \frac{1}{a_1 a_2^2} \rangle \\ \bullet \ \text{But} \ \langle \partial \mathcal{W}_q \rangle \supset \langle a_1 - a_2 \rangle \\ \bullet \ \text{So} \ \mathbb{C}[(\mathbb{C}^*)^2 \times \mathbb{C}_q^*]/\langle \partial \mathcal{W}_q \rangle \cong \mathbb{C}[a^{\pm 1}, q^{\pm 1}]/\langle 1 - q \frac{1}{a^3} \rangle \end{array}$$

$$\begin{array}{l} \bullet \ qH^*(\mathbb{CP}^2) = \mathbb{C}[h,q]/\langle h^3 - q \rangle \\ \bullet \ \text{Consider} \ \mathcal{W}_q : (\mathbb{C}^*)^2 \to \mathbb{C} : (a_1,a_2) \mapsto a_1 + a_2 + q \frac{1}{a_1 a_2} \\ \bullet \ \text{Then} \ \mathbb{C}[(\mathbb{C}^*)^2 \times \mathbb{C}_q^*] = \mathbb{C}[a_1^{\pm 1}, a_2^{\pm 1}, q^{\pm 1}] \\ \bullet \ \text{And} \ \langle \partial \mathcal{W}_q \rangle = \langle 1 - q \frac{1}{a_1^2 a_2}, 1 - q \frac{1}{a_1 a_2^2} \rangle \\ \bullet \ \text{But} \ \langle \partial \mathcal{W}_q \rangle \supset \langle a_1 - a_2 \rangle \\ \bullet \ \text{So} \ \mathbb{C}[(\mathbb{C}^*)^2 \times \mathbb{C}_q^*]/\langle \partial \mathcal{W}_q \rangle \cong \mathbb{C}[a^{\pm 1}, q^{\pm 1}]/\langle 1 - q \frac{1}{a^3} \rangle \\ \cong q H^*(\mathbb{CP}^2)[q^{-1}] \end{array}$$

$$\begin{array}{l} \bullet \ qH^*(\mathbb{CP}^2) = \mathbb{C}[h,q]/\langle h^3 - q \rangle \\ \bullet \ \text{Consider} \ \mathcal{W}_q : (\mathbb{C}^*)^2 \to \mathbb{C} : (a_1,a_2) \mapsto a_1 + a_2 + q \frac{1}{a_1 a_2} \\ \bullet \ \text{Then} \ \mathbb{C}[(\mathbb{C}^*)^2 \times \mathbb{C}_q^*] = \mathbb{C}[a_1^{\pm 1}, a_2^{\pm 1}, q^{\pm 1}] \\ \bullet \ \text{And} \ \langle \partial \mathcal{W}_q \rangle = \langle 1 - q \frac{1}{a_1^2 a_2}, 1 - q \frac{1}{a_1 a_2^2} \rangle \\ \bullet \ \text{But} \ \langle \partial \mathcal{W}_q \rangle \supset \langle a_1 - a_2 \rangle \\ \bullet \ \text{So} \ \mathbb{C}[(\mathbb{C}^*)^2 \times \mathbb{C}_q^*]/\langle \partial \mathcal{W}_q \rangle \cong \mathbb{C}[a^{\pm 1}, q^{\pm 1}]/\langle 1 - q \frac{1}{a^3} \rangle \\ \cong q H^*(\mathbb{CP}^2)[q^{-1}] \end{array}$$

Landau-Ginzburg model for X

A pair $(X^{\vee}, \mathcal{W}_q : X^{\vee} \to \mathbb{C})$ such that $\mathbb{C}[X^{\vee} \times \mathbb{C}_q^*]/\langle \partial \mathcal{W}_q \rangle \cong qH^*(X)[q^{-1}]$

$$\begin{array}{l} \bullet \ qH^*(\mathbb{CP}^2) = \mathbb{C}[h,q]/\langle h^3 - q \rangle \\ \bullet \ \text{Consider} \ \mathcal{W}_q : (\mathbb{C}^*)^2 \to \mathbb{C} : (a_1,a_2) \mapsto a_1 + a_2 + q \frac{1}{a_1 a_2} \\ \bullet \ \text{Then} \ \mathbb{C}[(\mathbb{C}^*)^2 \times \mathbb{C}_q^*] = \mathbb{C}[a_1^{\pm 1}, a_2^{\pm 1}, q^{\pm 1}] \\ \bullet \ \text{And} \ \langle \partial \mathcal{W}_q \rangle = \langle 1 - q \frac{1}{a_1^2 a_2}, 1 - q \frac{1}{a_1 a_2^2} \rangle \\ \bullet \ \text{But} \ \langle \partial \mathcal{W}_q \rangle \supset \langle a_1 - a_2 \rangle \\ \bullet \ \text{So} \ \mathbb{C}[(\mathbb{C}^*)^2 \times \mathbb{C}_q^*]/\langle \partial \mathcal{W}_q \rangle \cong \mathbb{C}[a^{\pm 1}, q^{\pm 1}]/\langle 1 - q \frac{1}{a^3} \rangle \\ \cong q H^*(\mathbb{CP}^2)[q^{-1}] \end{array}$$

Landau-Ginzburg model for X

A pair $(X^{\vee}, \mathcal{W}_q : X^{\vee} \to \mathbb{C})$ such that $\mathbb{C}[X^{\vee} \times \mathbb{C}_q^*]/\langle \partial \mathcal{W}_q \rangle \cong qH^*(X)[q^{-1}]$

(Assuming the rank of $H_2(X, \mathbb{Z})$ is 1.)

LG-models for homogeneous spaces

Homogeneous space: projective variety X with transitive action of a linear algebraic group G

LG-models for homogeneous spaces

- Homogeneous space: projective variety X with transitive action of a linear algebraic group G
- We can write X = G/P, $P \subset G$ is called *parabolic*

- ► Homogeneous space: projective variety X with transitive action of a linear algebraic group G
- We can write X = G/P, $P \subset G$ is called *parabolic*
- ▶ Rietsch (2008) gives an LG-model $(X_{\text{Lie}}^{\vee}, \mathcal{W}_{\text{Lie}})$ for general G/P

- ► Homogeneous space: projective variety X with transitive action of a linear algebraic group G
- We can write X = G/P, $P \subset G$ is called *parabolic*
- ▶ Rietsch (2008) gives an LG-model $(X_{\text{Lie}}^{\vee}, \mathcal{W}_{\text{Lie}})$ for general G/P
- ▶ This model is most conveniently described on $\mathcal{Z}_P^{\vee} \cong X_{\text{Lie}}^{\vee} \times \mathbb{C}_q^*$

- ► Homogeneous space: projective variety X with transitive action of a linear algebraic group G
- We can write X = G/P, $P \subset G$ is called *parabolic*
- ▶ Rietsch (2008) gives an LG-model $(X_{\text{Lie}}^{\vee}, \mathcal{W}_{\text{Lie}})$ for general G/P
- ► This model is most conveniently described on Z[∨]_P ≅ X[∨]_{Lie} × C^{*}_q
- $\blacktriangleright \ \mathcal{Z}_P^{\vee} \subset G^{\vee}$ the Langlands dual group of G

- ► Homogeneous space: projective variety X with transitive action of a linear algebraic group G
- We can write X = G/P, $P \subset G$ is called *parabolic*
- ▶ Rietsch (2008) gives an LG-model $(X_{\text{Lie}}^{\vee}, \mathcal{W}_{\text{Lie}})$ for general G/P
- ▶ This model is most conveniently described on $\mathcal{Z}_P^{\vee} \cong X_{\text{Lie}}^{\vee} \times \mathbb{C}_q^*$
- Z[∨]_P ⊂ G[∨] the Langlands dual group of G
 G[∨] is the unique group having the coroots of G as roots and the cocharacters of G as characters

•
$$\mathbb{CP}^2 = \mathrm{SL}_3/P_1$$
, where $P_1 = \left\{ \begin{bmatrix} \frac{*}{0} & * & * \\ 0 & * & * \end{bmatrix} \right\} \cap \mathrm{SL}_3$

•
$$\mathbb{CP}^2 = \mathrm{SL}_3/P_1$$
, where $P_1 = \left\{ \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix} \right\} \cap \mathrm{SL}_3$

▶ $SL_3^{\vee} = PSL_3 = \{\mathbb{Z}_3M \mid M \in SL_3\}$, for $\mathbb{Z}_3 = \{1, \zeta = e^{2\pi i/3}, \zeta^2\}$

•
$$\mathbb{CP}^2 = \mathrm{SL}_3/P_1$$
, where $P_1 = \left\{ \begin{bmatrix} \frac{*}{0} & * & * \\ 0 & * & * \end{bmatrix} \right\} \cap \mathrm{SL}_3$

►
$$SL_3^{\vee} = PSL_3 = \{\mathbb{Z}_3M \mid M \in SL_3\}$$
, for $\mathbb{Z}_3 = \{1, \zeta = e^{2\pi i/3}, \zeta^2\}$
► $\mathcal{Z}_P^{\vee} = T^{\vee}U_-^{\vee}w_0 \cap U_+^{\vee}T^Pw_PU_-^P$

•
$$\mathbb{CP}^2 = \mathrm{SL}_3/P_1$$
, where $P_1 = \left\{ \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix} \right\} \cap \mathrm{SL}_3$

►
$$SL_3^{\vee} = PSL_3 = \{\mathbb{Z}_3M \mid M \in SL_3\}$$
, for $\mathbb{Z}_3 = \{1, \zeta = e^{2\pi i/3}, \zeta^2\}$

$$\blacktriangleright \ \mathcal{Z}_P^{\vee} = T^{\vee} U_-^{\vee} w_0 \cap U_+^{\vee} T^P w_P U_-^P$$

▶ Fact: $z \in \mathcal{Z}_P^{\vee}$ written *uniquely* as $z = u_+ t w_P u_-$

•
$$\mathbb{CP}^2 = \mathrm{SL}_3/P_1$$
, where $P_1 = \left\{ \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix} \right\} \cap \mathrm{SL}_3$

►
$$SL_3^{\vee} = PSL_3 = \{\mathbb{Z}_3M \mid M \in SL_3\}$$
, for $\mathbb{Z}_3 = \{1, \zeta = e^{2\pi i/3}, \zeta^2\}$

- $\blacktriangleright \ \mathcal{Z}_P^{\vee} = T^{\vee} U_-^{\vee} w_0 \cap U_+^{\vee} T^P w_P U_-^P$
- ▶ Fact: $z \in \mathcal{Z}_P^{\lor}$ written *uniquely* as $z = u_+ t w_P u_-$

▶ In fact: u_+ is fixed by u_- and t

•
$$\mathbb{CP}^2 = \mathrm{SL}_3/P_1$$
, where $P_1 = \left\{ \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix} \right\} \cap \mathrm{SL}_3$

►
$$SL_3^{\vee} = PSL_3 = \{\mathbb{Z}_3M \mid M \in SL_3\}$$
, for $\mathbb{Z}_3 = \{1, \zeta = e^{2\pi i/3}, \zeta^2\}$

- $\blacktriangleright \ \mathcal{Z}_P^{\vee} = T^{\vee} U_-^{\vee} w_0 \cap U_+^{\vee} T^P w_P U_-^P$
- ▶ Fact: $z \in \mathcal{Z}_P^{\lor}$ written *uniquely* as $z = u_+ t w_P u_-$
 - ▶ In fact: u_+ is fixed by u_- and t

•
$$\mathbb{CP}^2 = \mathrm{SL}_3/P_1$$
, where $P_1 = \left\{ \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix} \right\} \cap \mathrm{SL}_3$

- $\operatorname{SL}_{3}^{\vee} = \operatorname{PSL}_{3} = \{\mathbb{Z}_{3}M \mid M \in \operatorname{SL}_{3}\}, \text{ for } \mathbb{Z}_{3} = \{1, \zeta = e^{2\pi i/3}, \zeta^{2}\}$
- $\blacktriangleright \ \mathcal{Z}_P^{\vee} = T^{\vee} U_-^{\vee} w_0 \cap U_+^{\vee} T^P w_P U_-^P$
- Fact: $z \in \mathcal{Z}_P^{\vee}$ written uniquely as $z = u_+ t w_P u_-$
 - ▶ In fact: u_+ is fixed by u_- and t

$$U_{+}^{\vee}T^{P}w_{P}U_{-}^{P} \ni z = \mathbb{Z}_{3} \begin{bmatrix} 1 & b_{1} & b_{3} \\ 0 & 1 & b_{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \mu^{-1} & 0 \\ 0 & 0 & \mu^{-1} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ a_{1} & 1 & 0 \\ 0 & a_{2} & 1 \end{bmatrix}$$

$$z \in T^{\vee}U_{-}^{\vee}w_{0} \implies b_{2} = 0, \quad b_{3} = -\frac{\mu^{3}}{a_{1}}, \quad b_{1} = -\frac{\mu^{3}}{a_{1}a_{2}}$$

•
$$\mathbb{CP}^2 = \mathrm{SL}_3/P_1$$
, where $P_1 = \left\{ \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix} \right\} \cap \mathrm{SL}_3$

- $SL_3^{\vee} = PSL_3 = \{\mathbb{Z}_3M \mid M \in SL_3\}, \text{ for } \mathbb{Z}_3 = \{1, \zeta = e^{2\pi i/3}, \zeta^2\}$
- $\blacktriangleright \ \mathcal{Z}_P^{\vee} = T^{\vee} U_-^{\vee} w_0 \cap U_+^{\vee} T^P w_P U_-^P$
- Fact: $z \in \mathcal{Z}_P^{\vee}$ written uniquely as $z = u_+ t w_P u_-$
 - ▶ In fact: u_+ is fixed by u_- and t

$$\begin{array}{l} \bullet \quad U_{+}^{\vee}T^{P}w_{P}U_{-}^{P} \ni z = \mathbb{Z}_{3} \begin{bmatrix} 1 & b_{1} & b_{3} \\ 0 & 1 & b_{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u^{2} & 0 & 0 \\ 0 & \mu^{-1} & 0 \\ 0 & 0 & \mu^{-1} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & a_{1} & 1 & 0 \\ 0 & a_{2} & 1 \end{bmatrix} \\ \bullet \quad z \in T^{\vee}U_{-}^{\vee}w_{0} \quad \Rightarrow \quad b_{2} = 0, \quad b_{3} = -\frac{\mu^{3}}{a_{1}}, \quad b_{1} = -\frac{\mu^{3}}{a_{1}a_{2}} \\ \bullet \quad \text{Consider} \ (e_{i}^{\vee})^{*} : \begin{bmatrix} 1 & b_{1} & b_{3} \\ 0 & 0 & 1 \end{bmatrix} \mapsto b_{i} \text{ and } (f_{i}^{\vee})^{*} : \begin{bmatrix} 1 & 0 & 0 \\ 0 & a_{2} & 1 \end{bmatrix} \mapsto a_{i} \end{array}$$

•
$$\mathbb{CP}^2 = \mathrm{SL}_3/P_1$$
, where $P_1 = \left\{ \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix} \right\} \cap \mathrm{SL}_3$

- $SL_3^{\vee} = PSL_3 = \{\mathbb{Z}_3M \mid M \in SL_3\}, \text{ for } \mathbb{Z}_3 = \{1, \zeta = e^{2\pi i/3}, \zeta^2\}$
- $\blacktriangleright \ \mathcal{Z}_P^{\vee} = T^{\vee} U_-^{\vee} w_0 \cap U_+^{\vee} T^P w_P U_-^P$
- Fact: $z \in \mathcal{Z}_P^{\vee}$ written uniquely as $z = u_+ t w_P u_-$

$$\begin{array}{l} \bullet \quad U_{+}^{\vee}T^{P}w_{P}U_{-}^{P} \ni z = \mathbb{Z}_{3} \begin{bmatrix} 1 & b_{1} & b_{3} \\ 0 & 1 & b_{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & \mu^{-1} & 0 \\ 0 & 0 & \mu^{-1} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ a_{1} & 1 & 0 \\ 0 & a_{2} & 1 \end{bmatrix} \\ \bullet \quad z \in T^{\vee}U_{-}^{\vee}w_{0} \quad \Rightarrow \quad b_{2} = 0, \quad b_{3} = -\frac{\mu^{3}}{a_{1}}, \quad b_{1} = -\frac{\mu^{3}}{a_{1}a_{2}} \\ \bullet \quad \text{Consider} \ (e_{i}^{\vee})^{*} : \begin{bmatrix} 1 & b_{1} & b_{3} \\ 0 & 1 & b_{2} \\ 0 & 0 & 1 \end{bmatrix} \mapsto b_{i} \text{ and } (f_{i}^{\vee})^{*} : \begin{bmatrix} 1 & 0 & 0 \\ a_{1} & 1 & 0 \\ a_{3} & a_{2} & 1 \end{bmatrix} \mapsto a_{i} \\ \bullet \quad \text{For } z = u_{+}tw_{P}u_{-} \text{ we find } (f_{i}^{\vee})^{*}(u_{-}) = a_{i}, \end{array}$$

•
$$\mathbb{CP}^2 = \mathrm{SL}_3/P_1$$
, where $P_1 = \left\{ \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix} \right\} \cap \mathrm{SL}_3$

- $SL_3^{\vee} = PSL_3 = \{\mathbb{Z}_3M \mid M \in SL_3\}, \text{ for } \mathbb{Z}_3 = \{1, \zeta = e^{2\pi i/3}, \zeta^2\}$
- $\blacktriangleright \ \mathcal{Z}_P^{\vee} = T^{\vee} U_-^{\vee} w_0 \cap U_+^{\vee} T^P w_P U_-^P$
- Fact: $z \in \mathcal{Z}_P^{\vee}$ written uniquely as $z = u_+ t w_P u_-$
 - ▶ In fact: u_+ is fixed by u_- and t

•
$$U_{+}^{\vee}T^{P}w_{P}U_{-}^{P} \ni z = \mathbb{Z}_{3}\begin{bmatrix} 1 & b_{1} & b_{3} \\ 0 & 1 & b_{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu^{2} & 0 & 0 \\ 0 & \mu^{-1} & 0 \\ 0 & 0 & \mu^{-1} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ a_{1} & 1 & 0 \\ 0 & a_{2} & 1 \end{bmatrix}$$

• $z \in T^{\vee}U_{-}^{\vee}w_{0} \Rightarrow b_{2} = 0, \quad b_{3} = -\frac{\mu^{3}}{a_{1}}, \quad b_{1} = -\frac{\mu^{3}}{a_{1}a_{2}}$

• Consider
$$(e_i^{\vee})^* : \begin{bmatrix} 1 & 0_1 & 0_3 \\ 0 & 1 & b_2 \\ 0 & 0 & 1 \end{bmatrix} \mapsto b_i$$
 and $(f_i^{\vee})^* : \begin{bmatrix} 1 & 0 & 0 \\ a_1 & 1 & 0 \\ a_3 & a_2 & 1 \end{bmatrix} \mapsto a_i$

► For
$$z = u_+ t w_P u_-$$
 we find $(f_i^{\vee})^*(u_-) = a_i$,
 $(e_1^{\vee})^*(u_+^{-1}) = q \frac{1}{a_1 a_2}$,

•
$$\mathbb{CP}^2 = \mathrm{SL}_3/P_1$$
, where $P_1 = \left\{ \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix} \right\} \cap \mathrm{SL}_3$

- $\operatorname{SL}_3^{\vee} = \operatorname{PSL}_3 = \{\mathbb{Z}_3 M \mid M \in \operatorname{SL}_3\}, \text{ for } \mathbb{Z}_3 = \{1, \zeta = e^{2\pi i/3}, \zeta^2\}$
- $\blacktriangleright \ \mathcal{Z}_P^{\vee} = T^{\vee} U_-^{\vee} w_0 \cap U_+^{\vee} T^P w_P U_-^P$
- Fact: $z \in \mathcal{Z}_P^{\vee}$ written uniquely as $z = u_+ t w_P u_-$
 - ▶ In fact: u_+ is fixed by u_- and t

$$U_{+}^{\vee}T^{P}w_{P}U_{-}^{P} \ni z = \mathbb{Z}_{3} \begin{bmatrix} 1 & b_{1} & b_{3} \\ 0 & 1 & b_{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu^{2} & 0 & 0 \\ 0 & \mu^{-1} & 0 \\ 0 & 0 & \mu^{-1} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ a_{1} & 1 & 0 \\ 0 & a_{2} & 1 \end{bmatrix}$$

$$z \in T^{\vee}U_{-}^{\vee}w_{0} \implies b_{2} = 0, \quad b_{3} = -\frac{\mu^{3}}{a_{1}}, \quad b_{1} = -\frac{\mu^{3}}{a_{1}a_{2}}$$

- Consider $(e_i^{\vee})^* : \begin{bmatrix} 1 & b_1 & b_3 \\ 0 & 1 & b_2 \\ 0 & 0 & 1 \end{bmatrix} \mapsto b_i$ and $(f_i^{\vee})^* : \begin{bmatrix} 1 & 0 & 0 \\ a_1 & 1 & 0 \\ a_3 & a_2 & 1 \end{bmatrix} \mapsto a_i$
- ► For $z = u_+ t w_P u_-$ we find $(f_i^{\vee})^*(u_-) = a_i$, $(e_1^{\vee})^*(u_+^{-1}) = q \frac{1}{a_1 a_2}$, $(e_2^{\vee})^*(u_+^{-1}) = 0$

•
$$\mathbb{CP}^2 = \mathrm{SL}_3/P_1$$
, where $P_1 = \left\{ \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix} \right\} \cap \mathrm{SL}_3$

- $SL_3^{\vee} = PSL_3 = \{\mathbb{Z}_3M \mid M \in SL_3\}, \text{ for } \mathbb{Z}_3 = \{1, \zeta = e^{2\pi i/3}, \zeta^2\}$
- $\blacktriangleright \ \mathcal{Z}_P^{\vee} = T^{\vee} U_-^{\vee} w_0 \cap U_+^{\vee} T^P w_P U_-^P$
- Fact: $z \in \mathcal{Z}_P^{\vee}$ written uniquely as $z = u_+ t w_P u_-$

$$U_{+}^{\vee}T^{P}w_{P}U_{-}^{P} \ni z = \mathbb{Z}_{3} \begin{bmatrix} 1 & b_{1} & b_{3} \\ 0 & 1 & b_{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \mu^{-1} & 0 \\ 0 & 0 & \mu^{-1} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ a_{1} & 1 & 0 \\ 0 & a_{2} & 1 \end{bmatrix}$$

$$z \in T^{\vee}U_{-}^{\vee}w_{0} \implies b_{2} = 0, \quad b_{3} = -\frac{\mu^{3}}{a_{1}}, \quad b_{1} = -\frac{\mu^{3}}{a_{1}a_{2}}$$

- Consider $(e_i^{\vee})^* : \begin{bmatrix} 1 & b_1 & b_3 \\ 0 & 1 & b_2 \\ 0 & 0 & 1 \end{bmatrix} \mapsto b_i$ and $(f_i^{\vee})^* : \begin{bmatrix} 1 & 0 & 0 \\ a_1 & 1 & 0 \\ a_3 & a_2 & 1 \end{bmatrix} \mapsto a_i$
- ► For $z = u_+ tw_P u_-$ we find $(f_i^{\vee})^*(u_-) = a_i$, $(e_1^{\vee})^*(u_+^{-1}) = q \frac{1}{a_1 a_2}$, $(e_2^{\vee})^*(u_+^{-1}) = 0$ ► $\mathcal{W}_{Z_{\nu}^{\vee}}(z) = \sum_{i=1}^2 (e_i^{\vee})^*(u_+^{-1}) + (f_i^{\vee})^*(u_-)$

An example: Lie-theoretic mirror for \mathbb{CP}^2

•
$$\mathbb{CP}^2 = \mathrm{SL}_3/P_1$$
, where $P_1 = \left\{ \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix} \right\} \cap \mathrm{SL}_3$

- $SL_3^{\vee} = PSL_3 = \{\mathbb{Z}_3M \mid M \in SL_3\}, \text{ for } \mathbb{Z}_3 = \{1, \zeta = e^{2\pi i/3}, \zeta^2\}$
- $\blacktriangleright \ \mathcal{Z}_P^{\vee} = T^{\vee} U_-^{\vee} w_0 \cap U_+^{\vee} T^P w_P U_-^P$
- Fact: $z \in \mathcal{Z}_P^{\vee}$ written uniquely as $z = u_+ t w_P u_-$
 - ▶ In fact: u_+ is fixed by u_- and t

$$U_{+}^{\vee}T^{P}w_{P}U_{-}^{P} \ni z = \mathbb{Z}_{3} \begin{bmatrix} 1 & b_{1} & b_{3} \\ 0 & 1 & b_{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu^{2} & 0 & 0 \\ 0 & \mu^{-1} & 0 \\ 0 & 0 & \mu^{-1} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ a_{1} & 1 & 0 \\ 0 & a_{2} & 1 \end{bmatrix}$$

•
$$z \in T^{\vee}U_{-}^{\vee}w_0 \Rightarrow b_2 = 0, \ b_3 = -\frac{\mu^{\vee}}{a_1}, \ b_1 = -\frac{\mu^{\vee}}{a_1a_2}$$

- Consider $(e_i^{\vee})^* : \begin{bmatrix} 1 & b_1 & b_3 \\ 0 & 1 & b_2 \\ 0 & 0 & 1 \end{bmatrix} \mapsto b_i$ and $(f_i^{\vee})^* : \begin{bmatrix} 1 & 0 & 0 \\ a_1 & 1 & 0 \\ a_3 & a_2 & 1 \end{bmatrix} \mapsto a_i$
- For z = u₊tw_Pu₋ we find (f_i[∨])*(u₋) = a_i, (e₁[∨])*(u₊⁻¹) = q_{1aa2}, (e₂[∨])*(u₊⁻¹) = 0
 W_{Z_P[∨]}(z) = ∑_{i=1}²(e_i[∨])*(u₊⁻¹) + (f_i[∨])*(u₋) = a₁ + a₂ + q_{1aa2}

$$\mathcal{Z}_{P}^{\vee} = T^{\vee} U_{-}^{\vee} w_{0} \cap U_{+}^{\vee} T^{P} w_{P} U_{-}^{\vee} \\ \mathcal{W}_{\mathcal{Z}_{P}^{\vee}}(z) = \sum_{i=1}^{n} (e_{i}^{\vee})^{*} (u_{+}^{-1}) + (f_{i}^{\vee})^{*} (u_{-})$$

•
$$\mathcal{Z}_{P}^{\vee} = T^{\vee}U_{-}^{\vee}w_{0} \cap U_{+}^{\vee}T^{P}w_{P}U_{-}^{\vee}$$

 $\mathcal{W}_{\mathcal{Z}_{P}^{\vee}}(z) = \sum_{i=1}^{n} (e_{i}^{\vee})^{*}(u_{+}^{-1}) + (f_{i}^{\vee})^{*}(u_{-})$

• For \mathbb{CP}^2 : $\mathcal{W}_{\mathcal{Z}_P^{\vee}}(z) = a_1 + a_2 + q \frac{1}{a_1 a_2}$

$$\mathcal{Z}_{P}^{\vee} = T^{\vee} U_{-}^{\vee} w_{0} \cap U_{+}^{\vee} T^{P} w_{P} U_{-}^{\vee} \\ \mathcal{W}_{\mathcal{Z}_{P}^{\vee}}(z) = \sum_{i=1}^{n} (e_{i}^{\vee})^{*} (u_{+}^{-1}) + (f_{i}^{\vee})^{*} (u_{-}^{-1})$$

)

• For
$$\mathbb{CP}^2$$
: $\mathcal{W}_{\mathcal{Z}_P^{\vee}}(z) = a_1 + a_2 + q \frac{1}{a_1 a_2}$

End of story

$$\mathcal{Z}_{P}^{\vee} = T^{\vee} U_{-}^{\vee} w_{0} \cap U_{+}^{\vee} T^{P} w_{P} U_{-}^{\vee} \\ \mathcal{W}_{\mathcal{Z}_{P}^{\vee}}(z) = \sum_{i=1}^{n} (e_{i}^{\vee})^{*} (u_{+}^{-1}) + (f_{i}^{\vee})^{*} (u_{-}^{-1})$$

)

• For
$$\mathbb{CP}^2$$
: $\mathcal{W}_{\mathcal{Z}_P^{\vee}}(z) = a_1 + a_2 + q \frac{1}{a_1 a_2}$

End of story ... or is it?

$$\mathcal{Z}_{P}^{\vee} = T^{\vee} U_{-}^{\vee} w_{0} \cap U_{+}^{\vee} T^{P} w_{P} U_{-}^{\vee} \\ \mathcal{W}_{\mathcal{Z}_{P}^{\vee}}(z) = \sum_{i=1}^{n} (e_{i}^{\vee})^{*} (u_{+}^{-1}) + (f_{i}^{\vee})^{*} (u_{-})$$

- For \mathbb{CP}^2 : $\mathcal{W}_{\mathcal{Z}_P^{\vee}}(z) = a_1 + a_2 + q \frac{1}{a_1 a_2}$
- End of story ... or is it?
- ▶ For \mathbb{CP}^2 , \mathcal{Z}_P^{\vee} is an algebraic torus with coordinates $a_1, a_2, \mu \in \mathbb{C}^*$

$$\mathcal{Z}_{P}^{\vee} = T^{\vee} U_{-}^{\vee} w_{0} \cap U_{+}^{\vee} T^{P} w_{P} U_{-}^{\vee} \\ \mathcal{W}_{\mathcal{Z}_{P}^{\vee}}(z) = \sum_{i=1}^{n} (e_{i}^{\vee})^{*} (u_{+}^{-1}) + (f_{i}^{\vee})^{*} (u_{-})$$

• For
$$\mathbb{CP}^2$$
: $\mathcal{W}_{\mathcal{Z}_P^{\vee}}(z) = a_1 + a_2 + q \frac{1}{a_1 a_2}$

- End of story ... or is it?
- ▶ For \mathbb{CP}^2 , \mathcal{Z}_P^{\vee} is an algebraic torus with coordinates $a_1, a_2, \mu \in \mathbb{C}^*$
- Not true in general; we only have (*)

$$\mathcal{Z}_{P}^{\vee} = T^{\vee}U_{-}^{\vee}w_{0} \cap U_{+}^{\vee}T^{P}w_{P}U_{-}^{\vee} \\ \mathcal{W}_{\mathcal{Z}_{P}^{\vee}}(z) = \sum_{i=1}^{n} (e_{i}^{\vee})^{*}(u_{+}^{-1}) + (f_{i}^{\vee})^{*}(u_{-})$$

- For \mathbb{CP}^2 : $\mathcal{W}_{\mathcal{Z}_P^{\vee}}(z) = a_1 + a_2 + q \frac{1}{a_1 a_2}$
- End of story ... or is it?
- ▶ For \mathbb{CP}^2 , \mathcal{Z}_P^{\vee} is an algebraic torus with coordinates $a_1, a_2, \mu \in \mathbb{C}^*$
- Not true in general; we only have (*)
- ▶ In other words: we do not have "nice" coordinates on Z_P^{\vee}

$$\mathcal{Z}_{P}^{\vee} = T^{\vee}U_{-}^{\vee}w_{0} \cap U_{+}^{\vee}T^{P}w_{P}U_{-}^{\vee} \\ \mathcal{W}_{\mathcal{Z}_{P}^{\vee}}(z) = \sum_{i=1}^{n} (e_{i}^{\vee})^{*}(u_{+}^{-1}) + (f_{i}^{\vee})^{*}(u_{-})$$

- For \mathbb{CP}^2 : $\mathcal{W}_{\mathcal{Z}_P^{\vee}}(z) = a_1 + a_2 + q \frac{1}{a_1 a_2}$
- End of story ... or is it?
- ▶ For \mathbb{CP}^2 , \mathcal{Z}_P^{\vee} is an algebraic torus with coordinates $a_1, a_2, \mu \in \mathbb{C}^*$
- Not true in general; we only have (*)
- In other words: we do not have "nice" coordinates on Z[∨]_P
- Enter: *cominuscule* homogeneous spaces G/P_k

(*

$$\mathcal{Z}_{P}^{\vee} = T^{\vee} U_{-}^{\vee} w_{0} \cap U_{+}^{\vee} T^{P} w_{P} U_{-}^{\vee} \\ \mathcal{W}_{\mathcal{Z}_{P}^{\vee}}(z) = \sum_{i=1}^{n} (e_{i}^{\vee})^{*} (u_{+}^{-1}) + (f_{i}^{\vee})^{*} (u_{-})$$

- For \mathbb{CP}^2 : $\mathcal{W}_{\mathcal{Z}_P^{\vee}}(z) = a_1 + a_2 + q \frac{1}{a_1 a_2}$
- End of story ... or is it?
- ▶ For \mathbb{CP}^2 , \mathcal{Z}_P^{\vee} is an algebraic torus with coordinates $a_1, a_2, \mu \in \mathbb{C}^*$
- Not true in general; we only have (*)
- ▶ In other words: we do not have "nice" coordinates on \mathcal{Z}_P^{\vee}
- Enter: cominuscule homogeneous spaces G/P_k
- ► These have natural projective coordinates on P[∨]_k\G[∨]

(*

$$\mathcal{Z}_{P}^{\vee} = T^{\vee} U_{-}^{\vee} w_{0} \cap U_{+}^{\vee} T^{P} w_{P} U_{-}^{\vee} \\ \mathcal{W}_{\mathcal{Z}_{P}^{\vee}}(z) = \sum_{i=1}^{n} (e_{i}^{\vee})^{*} (u_{+}^{-1}) + (f_{i}^{\vee})^{*} (u_{-})$$

- For \mathbb{CP}^2 : $\mathcal{W}_{\mathcal{Z}_P^{\vee}}(z) = a_1 + a_2 + q \frac{1}{a_1 a_2}$
- End of story ... or is it?
- ▶ For \mathbb{CP}^2 , \mathcal{Z}_P^{\vee} is an algebraic torus with coordinates $a_1, a_2, \mu \in \mathbb{C}^*$
- Not true in general; we only have (*)
- ▶ In other words: we do not have "nice" coordinates on Z_P^{\vee}
- Enter: cominuscule homogeneous spaces G/P_k
- These have natural projective coordinates on $P_k^{\vee} \setminus G^{\vee}$
 - Called (generalized) Plücker coordinates

•
$$\mathcal{Z}_{P}^{\vee} = T^{\vee}U_{-}^{\vee}w_{0} \cap U_{+}^{\vee}T^{P}w_{P}U_{-}^{\vee}$$

 $\mathcal{W}_{\mathcal{Z}_{P}^{\vee}}(z) = \sum_{i=1}^{n} (e_{i}^{\vee})^{*}(u_{+}^{-1}) + (f_{i}^{\vee})^{*}(u_{-})$

- For \mathbb{CP}^2 : $\mathcal{W}_{\mathcal{Z}_P^{\vee}}(z) = a_1 + a_2 + q \frac{1}{a_1 a_2}$
- End of story ... or is it?
- ▶ For \mathbb{CP}^2 , \mathcal{Z}_P^{\vee} is an algebraic torus with coordinates $a_1, a_2, \mu \in \mathbb{C}^*$
- Not true in general; we only have (*)
- ▶ In other words: we do not have "nice" coordinates on \mathcal{Z}_P^{\vee}
- Enter: cominuscule homogeneous spaces G/P_k
- ▶ These have natural projective coordinates on $P_k^{\vee} \backslash G^{\vee}$
 - Called (generalized) Plücker coordinates
- ▶ Geometric Satake correspondence: the generators of H^{*}(G/P_k) correspond one-to-one with the Plücker coordinates on P[∨]_k \ G[∨]

(*

$$\mathcal{Z}_{P}^{\vee} = T^{\vee} U_{-}^{\vee} w_{0} \cap U_{+}^{\vee} T^{P} w_{P} U_{-}^{\vee} \\ \mathcal{W}_{\mathcal{Z}_{P}^{\vee}}(z) = \sum_{i=1}^{n} (e_{i}^{\vee})^{*} (u_{+}^{-1}) + (f_{i}^{\vee})^{*} (u_{-})$$

- For \mathbb{CP}^2 : $\mathcal{W}_{\mathcal{Z}_P^{\vee}}(z) = a_1 + a_2 + q \frac{1}{a_1 a_2}$
- End of story ... or is it?
- ▶ For \mathbb{CP}^2 , \mathcal{Z}_P^{\vee} is an algebraic torus with coordinates $a_1, a_2, \mu \in \mathbb{C}^*$
- Not true in general; we only have (*)
- ▶ In other words: we do not have "nice" coordinates on \mathcal{Z}_P^{\vee}
- Enter: *cominuscule* homogeneous spaces G/P_k
- \blacktriangleright These have natural projective coordinates on $P_k^\vee\backslash G^\vee$
 - Called (generalized) Plücker coordinates
- Geometric Satake correspondence: the generators of H^{*}(G/P_k) correspond one-to-one with the Plücker coordinates on P[∨]_k \G[∨]
 - Advantage: simplify translation between $qH^*(X)$ and $\mathbb{C}[X^{\vee}]$

$$\mathcal{Z}_{P}^{\vee} = T^{\vee} U_{-}^{\vee} w_{0} \cap U_{+}^{\vee} T^{P} w_{P} U_{-}^{\vee} \\ \mathcal{W}_{\mathcal{Z}_{P}^{\vee}}(z) = \sum_{i=1}^{n} (e_{i}^{\vee})^{*} (u_{+}^{-1}) + (f_{i}^{\vee})^{*} (u_{-})$$

- For \mathbb{CP}^2 : $\mathcal{W}_{\mathcal{Z}_P^{\vee}}(z) = a_1 + a_2 + q \frac{1}{a_1 a_2}$
- End of story ... or is it?
- ▶ For \mathbb{CP}^2 , \mathcal{Z}_P^{\vee} is an algebraic torus with coordinates $a_1, a_2, \mu \in \mathbb{C}^*$
- Not true in general; we only have (*)
- ▶ In other words: we do not have "nice" coordinates on \mathcal{Z}_P^{\vee}
- Enter: *cominuscule* homogeneous spaces G/P_k
- \blacktriangleright These have natural projective coordinates on $P_k^\vee\backslash G^\vee$

Called (generalized) Plücker coordinates

▶ Geometric Satake correspondence: the generators of H^{*}(G/P_k) correspond one-to-one with the Plücker coordinates on P[∨]_k\G[∨]

• Advantage: simplify translation between $qH^*(X)$ and $\mathbb{C}[X^{\vee}]$

► Goal: reformulate (Z[∨]_P, W_{Z[∨]_P}) in these coordinates

(*

$$\mathcal{Z}_{P}^{\vee} = T^{\vee} U_{-}^{\vee} w_{0} \cap U_{+}^{\vee} T^{P} w_{P} U_{-}^{\vee} \\ \mathcal{W}_{\mathcal{Z}_{P}^{\vee}}(z) = \sum_{i=1}^{n} (e_{i}^{\vee})^{*} (u_{+}^{-1}) + (f_{i}^{\vee})^{*} (u_{-})$$

- For \mathbb{CP}^2 : $\mathcal{W}_{\mathcal{Z}_P^{\vee}}(z) = a_1 + a_2 + q \frac{1}{a_1 a_2}$
- End of story ... or is it?
- ▶ For \mathbb{CP}^2 , \mathcal{Z}_P^{\vee} is an algebraic torus with coordinates $a_1, a_2, \mu \in \mathbb{C}^*$
- Not true in general; we only have (*)
- ▶ In other words: we do not have "nice" coordinates on \mathcal{Z}_P^{\lor}
- Enter: *cominuscule* homogeneous spaces G/P_k
- \blacktriangleright These have natural projective coordinates on $P_k^\vee\backslash G^\vee$

Called (generalized) Plücker coordinates

▶ Geometric Satake correspondence: the generators of H^{*}(G/P_k) correspond one-to-one with the Plücker coordinates on P[∨]_k\G[∨]

• Advantage: simplify translation between $qH^*(X)$ and $\mathbb{C}[X^{\vee}]$

- Goal: reformulate $(\mathcal{Z}_P^{\vee}, \mathcal{W}_{\mathcal{Z}_P^{\vee}})$ in these coordinates
 - ► These reformulated models are called *canonical LG-models*

▶ $P_1 \setminus PSL_3$ has coordinates p_0, p_1, p_2

- $P_1 \setminus PSL_3$ has coordinates p_0, p_1, p_2
- $\blacktriangleright X_{\operatorname{can}}^{\vee} = \{ p_i \neq 0 \} \subset P_1 \backslash \operatorname{PSL}_3$

- $P_1 \setminus PSL_3$ has coordinates p_0, p_1, p_2
- $\blacktriangleright X_{\operatorname{can}}^{\vee} = \{p_i \neq 0\} \subset P_1 \backslash \operatorname{PSL}_3$
- $\mathcal{W}_{can} = \frac{p_1}{p_0} + \frac{p_2}{p_1} + q\frac{p_0}{p_2}$

- $P_1 \setminus PSL_3$ has coordinates p_0, p_1, p_2
- X[∨]_{can} = {p_i ≠ 0} ⊂ P₁\PSL₃
 W_{can} = ^{p₁}/_{p₀} + ^{p₂}/_{p₁} + q^{p₀}/_{p₂}
 ⟨∂W_{can}⟩ = ⟨q¹/_{p₂} ^{p₁}/_{p₀²}, ¹/_{p₀} ^{p₂}/_{p₁²}, ¹/_{p₁} q^{p₀}/_{p₂²}⟩

- $P_1 \setminus PSL_3$ has coordinates p_0, p_1, p_2
- X[∨]_{can} = {p_i ≠ 0} ⊂ P₁\PSL₃
 W_{can} = ^{p₁}/_{p₀} + ^{p₂}/_{p₁} + q^{p₀}/_{p₂}
 ⟨∂W_{can}⟩ = ⟨q¹/_{p₂} ^{p₁}/_{p₀²}, ¹/_{p₀} ^{p₂}/_{p₁²}, ¹/_{p₁} q^{p₀}/_{p₂²}⟩ = ⟨p₁p₂ - q p²₀, p₁² - p₀p₂, p₂² - q p₀p₁⟩

- $P_1 \setminus PSL_3$ has coordinates p_0, p_1, p_2
- X[∨]_{can} = {p_i ≠ 0} ⊂ P₁\PSL₃
 W_{can} = ^{p₁}/_{p₀} + ^{p₂}/_{p₁} + q^{p₀}/_{p₂}
 ⟨∂W_{can}⟩ = ⟨q¹/_{p₂} ^{p₁}/_{p₀}, ¹/<sub>p₀</sup> ^{p₂}/_{p₁²}, ¹/_{p₁} q^{p₀}/_{p₂²}⟩ = ⟨p₁p₂ - q p₀², p₁² - p₀p₂, p₂² - q p₀p₁⟩
 Thus C[X[∨] × C^{*}_q]/⟨∂W_{can}⟩ ≅ qH^{*}(CP²)[q⁻¹] through the map: p₀ ↦ 1, p₁ ↦ h and p₂ ↦ h²
 </sub>

1.1

DIDOT

.

...

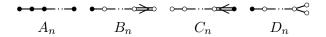
DIDAT

What are cominuscule homogeneous spaces?

- What are cominuscule homogeneous spaces?
 - $\operatorname{Gr}(k, n+1) = \operatorname{SL}_{n+1}/P_k$, type A_n

- What are cominuscule homogeneous spaces?
 - $\operatorname{Gr}(k, n+1) = \operatorname{SL}_{n+1}/P_k$, type A_n
 - ▶ $Q_d = \text{Spin}_{d+2}/P_1$, type B_n (d + 2 = 2n + 1) or D_n (d + 2 = 2n)

- What are cominuscule homogeneous spaces?
 - $\operatorname{Gr}(k, n+1) = \operatorname{SL}_{n+1}/P_k$, type A_n • $Q_d = \operatorname{Spin}_{d+2}/P_1$, type B_n (d+2=2n+1) or D_n (d+2=2n)• $\operatorname{LC}(n, 2n) = \operatorname{Sp}_n/P_n$ type C
 - $LG(n, 2n) = Sp_{2n}/P_n$, type C_n

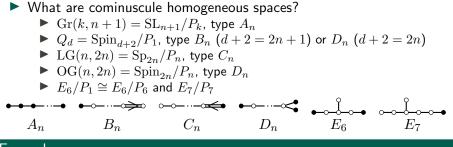


What are cominuscule homogeneous spaces?

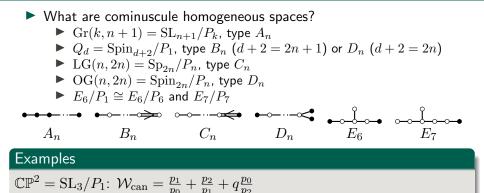
•
$$\operatorname{Gr}(k, n+1) = \operatorname{SL}_{n+1}/P_k$$
, type A_n
• $Q_d = \operatorname{Spin}_{d+2}/P_1$, type B_n $(d+2=2n+1)$ or D_n $(d+2=2n)$

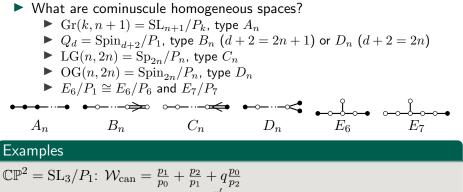
•
$$LG(n, 2n) = Sp_{2n}/P_n$$
, type C_n

•
$$OG(n, 2n) = Spin_{2n}/P_n$$
, type D_n



Examples





Gr(2,4) = SL₄/P₂:
$$\mathcal{W}_{can} = \frac{p_1}{p_0} + \frac{p'_2}{p_1} + \frac{p_3}{p_2} + \frac{p_3}{p'_2} + q\frac{p_1}{p_4}$$

► What are cominuscule homogeneous spaces?
►
$$Gr(k, n + 1) = SL_{n+1}/P_k$$
, type A_n
► $Q_d = Spin_{d+2}/P_1$, type B_n $(d+2=2n+1)$ or D_n $(d+2=2n)$
► $LG(n, 2n) = Sp_{2n}/P_n$, type C_n
► $OG(n, 2n) = Spin_{2n}/P_n$, type D_n
► $E_6/P_1 \cong E_6/P_6$ and E_7/P_7
► A_n B_n C_n D_n E_6 E_7
Examples
 $\mathbb{CP}^2 = SL_3/P_1$: $\mathcal{W}_{can} = \frac{p_1}{p_0} + \frac{p_2}{p_1} + q\frac{p_0}{p_2}$
 $Gr(2, 4) = SL_4/P_2$: $\mathcal{W}_{can} = \frac{p_1}{p_0} + \frac{p_2}{p_1} + \frac{p_3}{p_2} + \frac{p_3}{p_2} + \frac{p_3}{p_1} + q\frac{p_1}{p_1}$

$$Q_{3} = \operatorname{Spin}_{5}/P_{1}: \mathcal{W}_{\operatorname{can}} = \frac{p_{1}}{p_{0}} + \frac{p_{2}^{2}}{p_{1}p_{2} - p_{0}p_{3}} + q\frac{p_{1}}{p_{3}}$$
$$\operatorname{LG}(3,6) = \operatorname{Sp}_{5}/P_{1}: \mathcal{W}_{\operatorname{can}} = \frac{p_{1}}{p_{0}} + \frac{p_{2}p_{3}' - p_{0}p_{5}}{p_{1}p_{3} - p_{0}p_{4}} + \frac{p_{4}p_{5} - p_{3}p_{6}}{p_{3}'p_{5} - p_{2}p_{6}} + q\frac{p_{3}'}{p_{6}}$$

$$\begin{split} \mathbb{CP}^2 &= \mathrm{SL}_3/P_1: \ \mathcal{W}_{\mathrm{can}} = \frac{p_1}{p_0} + \frac{p_2}{p_1} + q\frac{p_0}{p_2} \\ \mathrm{Gr}(2,4) &= \mathrm{SL}_4/P_2: \ \mathcal{W}_{\mathrm{can}} = \frac{p_1}{p_0} + \frac{p_2'}{p_1} + \frac{p_3}{p_2} + \frac{p_3}{p_2'} + q\frac{p_1}{p_4} \\ Q_3 &= \mathrm{Spin}_5/P_1: \ \mathcal{W}_{\mathrm{can}} = \frac{p_1}{p_0} + \frac{p_2^2}{p_1p_2 - p_0p_3} + q\frac{p_1}{p_3} \\ \mathrm{LG}(3,6) &= \mathrm{Sp}_5/P_1: \ \mathcal{W}_{\mathrm{can}} = \frac{p_1}{p_0} + \frac{p_2p_3 - p_0p_5}{p_1p_3 - p_0p_4} + \frac{p_4p_5 - p_3p_6}{p_3'p_5 - p_2p_6} + q\frac{p_3'}{p_6} \\ E_6/P_6 \text{ has a cubic term,} \end{split}$$

Canonical LG-models for cominuscule G/P

$$\begin{split} \mathbb{CP}^2 &= \mathrm{SL}_3/P_1: \ \mathcal{W}_{\mathrm{can}} = \frac{p_1}{p_0} + \frac{p_2}{p_1} + q\frac{p_0}{p_2} \\ \mathrm{Gr}(2,4) &= \mathrm{SL}_4/P_2: \ \mathcal{W}_{\mathrm{can}} = \frac{p_1}{p_0} + \frac{p_2'}{p_1} + \frac{p_3}{p_2} + \frac{p_3}{p_2'} + q\frac{p_1}{p_4} \\ Q_3 &= \mathrm{Spin}_5/P_1: \ \mathcal{W}_{\mathrm{can}} = \frac{p_1}{p_0} + \frac{p_2^2}{p_1p_2 - p_0p_3} + q\frac{p_1}{p_3} \\ \mathrm{LG}(3,6) &= \mathrm{Sp}_5/P_1: \ \mathcal{W}_{\mathrm{can}} = \frac{p_1}{p_0} + \frac{p_2y_3 - p_0p_5}{p_1p_3 - p_0p_4} + \frac{p_4p_5 - p_3p_6}{p_3'p_5 - p_2p_6} + q\frac{p_3'}{p_6} \\ E_6/P_6 \text{ has a cubic term, and } E_7/P_7 \text{ a quartic term} \end{split}$$

Summary and more info

- Small quantum cohomology: "counting intersecting curves"
- ▶ LG-models $(X^{\vee}, \mathcal{W}_q)$ satisfying $\mathbb{C}[X^{\vee} \times \mathbb{C}_q^*]/\langle \partial \mathcal{W}_q \rangle \cong qH^*(X)[q^{-1}]$
- Two LG-models for homogeneous spaces:
 - Lie-theoretic model: any G/P, but abstract
 - Canonical model: correspondence, but only comin. and type-dependent
- More information?
 - More details about the quantum cohomology
 - A third LG-model: Laurent polynomial, type-independent & combinatorial, but only cominuscule & local (+sketch of proof)
 - How to define Plücker coordinates?
 - How to construct the canonical models?
- ► Related: cluster algebra structures for C[X[∨]_{can}]

Theorem

For any *cominuscule* homogeneous space G/P_k of dimension d, the restriction $\mathcal{W}_{\mathcal{Z}_P^{\circ}}$ of $\mathcal{W}_{\mathcal{Z}_P^{\vee}}$ to \mathcal{Z}_P° (\cong (\mathbb{C}^*)^d) can be written as

Theorem

For any *cominuscule* homogeneous space G/P_k of dimension d, the restriction $\mathcal{W}_{\mathcal{Z}_P^\circ}$ of $\mathcal{W}_{\mathcal{Z}_P^\circ}$ to \mathcal{Z}_P° ($\cong (\mathbb{C}^*)^d$) can be written as $\mathcal{W}_{\mathcal{Z}_P^\circ}(z) = a_1 + a_2 + \ldots + a_d + q \frac{r(a_i)}{a_1 a_2 \cdots a_d},$

Theorem

For any *cominuscule* homogeneous space G/P_k of dimension d, the restriction $\mathcal{W}_{\mathcal{Z}_P^{\circ}}$ of $\mathcal{W}_{\mathcal{Z}_P^{\vee}}$ to \mathcal{Z}_P° ($\cong (\mathbb{C}^*)^d$) can be written as $\mathcal{W}_{\mathcal{Z}_P^{\circ}}(z) = a_1 + a_2 + \ldots + a_d + q \frac{r(a_i)}{a_1 a_2 \cdots a_d},$

for a (known) homogeneous polynomial r.

Theorem

For any *cominuscule* homogeneous space G/P_k of dimension d, the restriction $\mathcal{W}_{\mathcal{Z}_P^{\circ}}$ of $\mathcal{W}_{\mathcal{Z}_P^{\vee}}$ to \mathcal{Z}_P° ($\cong (\mathbb{C}^*)^d$) can be written as $\mathcal{W}_{\mathcal{Z}_P^{\circ}}(z) = a_1 + a_2 + \ldots + a_d + q \frac{r(a_i)}{a_1 a_2 \cdots a_d},$

for a (known) homogeneous polynomial r.

► How to find *r*?

For any *cominuscule* homogeneous space G/P_k of dimension d, the restriction $\mathcal{W}_{\mathcal{Z}_P^{\circ}}$ of $\mathcal{W}_{\mathcal{Z}_P^{\vee}}$ to \mathcal{Z}_P° ($\cong (\mathbb{C}^*)^d$) can be written as $\mathcal{W}_{\mathcal{Z}_P^{\circ}}(z) = a_1 + a_2 + \ldots + a_d + q \frac{r(a_i)}{a_1 a_2 \cdots a_d},$

for a (known) homogeneous polynomial r.

► How to find *r*?

• Let $w_0 \in W$ and $w_P \in W_P$ be the longest elements

For any *cominuscule* homogeneous space G/P_k of dimension d, the restriction $\mathcal{W}_{\mathcal{Z}_P^{\circ}}$ of $\mathcal{W}_{\mathcal{Z}_P^{\vee}}$ to \mathcal{Z}_P° ($\cong (\mathbb{C}^*)^d$) can be written as

$$\mathcal{W}_{\mathcal{Z}_P^{\circ}}(z) = a_1 + a_2 + \ldots + a_d + q \frac{r(a_i)}{a_1 a_2 \cdots a_d}$$

for a (known) homogeneous polynomial r.

• How to find r?

- Let $w_0 \in W$ and $w_P \in W_P$ be the longest elements
- Let w^P , w'' be the minimal representatives of $w_0 W_P$, $w_P s_k W_P$

For any *cominuscule* homogeneous space G/P_k of dimension d, the restriction $\mathcal{W}_{\mathcal{Z}_P^{\circ}}$ of $\mathcal{W}_{\mathcal{Z}_P^{\vee}}$ to \mathcal{Z}_P° ($\cong (\mathbb{C}^*)^d$) can be written as

$$\mathcal{W}_{\mathcal{Z}_P^\circ}(z) = a_1 + a_2 + \ldots + a_d + q \frac{r(a_i)}{a_1 a_2 \cdots a_d},$$

for a (known) homogeneous polynomial r.

- How to find r?
 - Let $w_0 \in W$ and $w_P \in W_P$ be the longest elements
 - Let w^P , w'' be the minimal representatives of w_0W_P , $w_Ps_kW_P$

• Let
$$w' = w^P (w'')^{-1}$$
,

For any *cominuscule* homogeneous space G/P_k of dimension d, the restriction $\mathcal{W}_{\mathcal{Z}_P^{\circ}}$ of $\mathcal{W}_{\mathcal{Z}_P^{\vee}}$ to \mathcal{Z}_P° ($\cong (\mathbb{C}^*)^d$) can be written as $r(a_i)$

$$\mathcal{W}_{\mathcal{Z}_P^{\circ}}(z) = a_1 + a_2 + \ldots + a_d + q \frac{r(a_i)}{a_1 a_2 \cdots a_d},$$

for a (known) homogeneous polynomial r.

- How to find r?
 - Let $w_0 \in W$ and $w_P \in W_P$ be the longest elements
 - Let w^P , w'' be the minimal representatives of $w_0 W_P$, $w_P s_k W_P$
 - Let $w' = w^P (w'')^{-1}$, and fix a reduced expression for w^P

For any *cominuscule* homogeneous space G/P_k of dimension d, the restriction $\mathcal{W}_{\mathcal{Z}_P^{\circ}}$ of $\mathcal{W}_{\mathcal{Z}_P^{\vee}}$ to \mathcal{Z}_P° ($\cong (\mathbb{C}^*)^d$) can be written as $r(a_i)$

$$\mathcal{W}_{\mathcal{Z}_P^{\circ}}(z) = a_1 + a_2 + \ldots + a_d + q \frac{r(a_i)}{a_1 a_2 \cdots a_d}$$

for a (known) homogeneous polynomial r.

- ► How to find *r*?
 - Let $w_0 \in W$ and $w_P \in W_P$ be the longest elements
 - Let w^P , w'' be the minimal representatives of $w_0 W_P$, $w_P s_k W_P$
 - Let $w' = w^P (w'')^{-1}$, and fix a reduced expression for w^P

The terms of r correspond one-to-one with the reduced subexpressions for w' in the fixed expression for w^P .

For any *cominuscule* homogeneous space G/P_k of dimension d, the restriction $\mathcal{W}_{\mathcal{Z}_P^{\circ}}$ of $\mathcal{W}_{\mathcal{Z}_P^{\vee}}$ to \mathcal{Z}_P° ($\cong (\mathbb{C}^*)^d$) can be written as $r(a_i)$

$$\mathcal{W}_{\mathcal{Z}_P^\circ}(z) = a_1 + a_2 + \ldots + a_d + q \frac{r(a_i)}{a_1 a_2 \cdots a_d}$$

for a (known) homogeneous polynomial r.

- ► How to find *r*?
 - Let $w_0 \in W$ and $w_P \in W_P$ be the longest elements
 - Let w^P , w'' be the minimal representatives of $w_0 W_P$, $w_P s_k W_P$
 - Let $w' = w^P (w'')^{-1}$, and fix a reduced expression for w^P

The terms of r correspond one-to-one with the reduced subexpressions for w' in the fixed expression for w^P .

Example: for \mathbb{CP}^2 we have w' = 1.

• We can associate a quiver to $w^P = s_{r_1} s_{r_2} \cdots s_{r_\ell}$ [Perrin, 2007]

- We can associate a quiver to $w^P = s_{r_1} s_{r_2} \cdots s_{r_\ell}$ [Perrin, 2007]
- A subexpression for w' corresponds to a subset of vertices

- We can associate a quiver to $w^P = s_{r_1} s_{r_2} \cdots s_{r_\ell}$ [Perrin, 2007]
- A subexpression for w' corresponds to a subset of vertices
- ▶ We can find all these subsets using "moves" on a given one

- We can associate a quiver to $w^P = s_{r_1} s_{r_2} \cdots s_{r_\ell}$ [Perrin, 2007]
- A subexpression for w' corresponds to a subset of vertices
- We can find all these subsets using "moves" on a given one

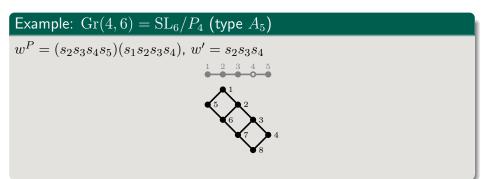
Example: $Gr(4,6) = SL_6/P_4$ (type A_5)

- We can associate a quiver to $w^P = s_{r_1} s_{r_2} \cdots s_{r_\ell}$ [Perrin, 2007]
- A subexpression for w' corresponds to a subset of vertices
- We can find all these subsets using "moves" on a given one

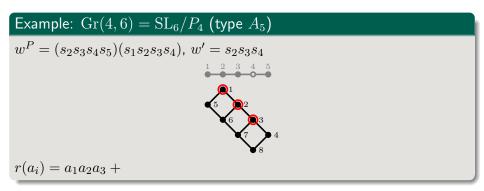
Example: $Gr(4,6) = SL_6/P_4$ (type A_5)

$$w^P = (s_2 s_3 s_4 s_5)(s_1 s_2 s_3 s_4), w' = s_2 s_3 s_4$$

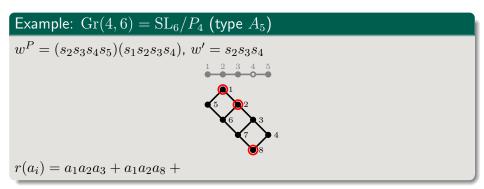
- We can associate a quiver to $w^P = s_{r_1} s_{r_2} \cdots s_{r_\ell}$ [Perrin, 2007]
- A subexpression for w' corresponds to a subset of vertices
- We can find all these subsets using "moves" on a given one



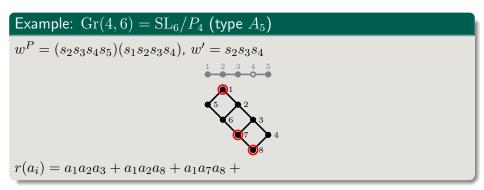
- We can associate a quiver to $w^P = s_{r_1} s_{r_2} \cdots s_{r_\ell}$ [Perrin, 2007]
- A subexpression for w' corresponds to a subset of vertices
- We can find all these subsets using "moves" on a given one



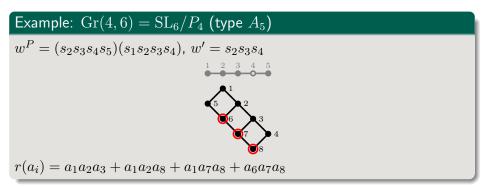
- We can associate a quiver to $w^P = s_{r_1} s_{r_2} \cdots s_{r_\ell}$ [Perrin, 2007]
- A subexpression for w' corresponds to a subset of vertices
- We can find all these subsets using "moves" on a given one



- We can associate a quiver to $w^P = s_{r_1} s_{r_2} \cdots s_{r_\ell}$ [Perrin, 2007]
- A subexpression for w' corresponds to a subset of vertices
- We can find all these subsets using "moves" on a given one



- We can associate a quiver to $w^P = s_{r_1} s_{r_2} \cdots s_{r_\ell}$ [Perrin, 2007]
- A subexpression for w' corresponds to a subset of vertices
- We can find all these subsets using "moves" on a given one



Summary and more info

- Small quantum cohomology: "counting intersecting curves"
- ▶ LG-models $(X^{\vee}, \mathcal{W}_q)$ satisfying $\mathbb{C}[X^{\vee} \times \mathbb{C}_q^*]/\langle \partial \mathcal{W}_q \rangle \cong qH^*(X)[q^{-1}]$
- Two LG-models for homogeneous spaces:
 - Lie-theoretic model: any G/P, but abstract
 - Canonical model: correspondence, but only comin. and type-dependent
- More information?
 - More details about the quantum cohomology
 - A third LG-model: Laurent polynomial, type-independent & combinatorial, but only cominuscule & local (+sketch of proof)
 - How to define Plücker coordinates?
 - How to construct the canonical models?
- ► Related: cluster algebra structures for C[X[∨]_{can}]

• We have
$$\mathcal{W}_{\text{Lie}}(z) = \sum_{i=1}^{n} (e_i^{\vee})^*(u_+) + (f_i^{\vee})^*(u_-)$$

- We have $\mathcal{W}_{\text{Lie}}(z) = \sum_{i=1}^{n} (e_i^{\vee})^*(u_+) + (f_i^{\vee})^*(u_-)$
- ▶ We are working on $Z_P^\circ \subset Z_P^\vee$ where $\sum_i (f_i^\vee)^*(u_-) = \sum_i a_i$

- We have $\mathcal{W}_{\text{Lie}}(z) = \sum_{i=1}^{n} (e_i^{\vee})^*(u_+) + (f_i^{\vee})^*(u_-)$
- We are working on $\mathcal{Z}_P^\circ \subset \mathcal{Z}_P^\vee$ where $\sum_i (f_i^\vee)^*(u_-) = \sum_i a_i$
- We can show in general that $(e_i^{\vee})^*(u_+) = 0$ for $k \neq i$

- We have $\mathcal{W}_{\text{Lie}}(z) = \sum_{i=1}^{n} (e_i^{\vee})^* (u_+) + (f_i^{\vee})^* (u_-)$
- ▶ We are working on $Z_P^\circ \subset Z_P^\vee$ where $\sum_i (f_i^\vee)^*(u_-) = \sum_i a_i$
- ▶ We can show in general that $(e_i^{\vee})^*(u_+) = 0$ for $k \neq i$
- ▶ Next, we note that $(e_k^{\vee})^*(u_+) = \langle u_+ f_k^{\vee} \cdot v_k^+, v_k^+ \rangle$, where $v_k^+ \in V(\omega_k^{\vee})$ is a highest weight vector and $\langle \cdot, v_k^+ \rangle$ denotes the coefficient after projection to $\mathbb{C}v_k^+$

- We have $\mathcal{W}_{\text{Lie}}(z) = \sum_{i=1}^{n} (e_i^{\vee})^* (u_+) + (f_i^{\vee})^* (u_-)$
- We are working on $\mathcal{Z}_P^\circ \subset \mathcal{Z}_P^\vee$ where $\sum_i (f_i^\vee)^*(u_-) = \sum_i a_i$
- ▶ We can show in general that $(e_i^{\vee})^*(u_+) = 0$ for $k \neq i$
- Next, we note that (e[∨]_k)*(u₊) = ⟨u₊f[∨]_k · v⁺_k, v⁺_k⟩, where v⁺_k ∈ V(ω[∨]_k) is a highest weight vector and ⟨·, v⁺_k⟩ denotes the coefficient after projection to Cv⁺_k
- Now, u_+ is uniquely determined by (u_-, t) in $z = u_+ t w_P u_-$, so we can rewrite $(e_k^{\vee})^*(u_+)$ in terms of (u_-, t)

- We have $\mathcal{W}_{\text{Lie}}(z) = \sum_{i=1}^{n} (e_i^{\vee})^* (u_+) + (f_i^{\vee})^* (u_-)$
- We are working on $\mathcal{Z}_P^\circ \subset \mathcal{Z}_P^\vee$ where $\sum_i (f_i^\vee)^*(u_-) = \sum_i a_i$
- ▶ We can show in general that $(e_i^{\vee})^*(u_+) = 0$ for $k \neq i$
- Next, we note that (e[∨]_k)*(u₊) = ⟨u₊f[∨]_k · v⁺_k, v⁺_k⟩, where v⁺_k ∈ V(ω[∨]_k) is a highest weight vector and ⟨·, v⁺_k⟩ denotes the coefficient after projection to Cv⁺_k
- Now, u₊ is uniquely determined by (u₋,t) in z = u₊tw_Pu₋, so we can rewrite (e[∨]_k)*(u₊) in terms of (u₋,t)
- ► Using that V(\u03c6_k^{\u03c6}) is a minuscule representation, we can exactly compute this contribution, as its structure is well-known and expressed type-independently

Summary and more info

- Small quantum cohomology: "counting intersecting curves"
- ▶ LG-models $(X^{\vee}, \mathcal{W}_q)$ satisfying $\mathbb{C}[X^{\vee} \times \mathbb{C}_q^*]/\langle \partial \mathcal{W}_q \rangle \cong qH^*(X)[q^{-1}]$
- Two LG-models for homogeneous spaces:
 - Lie-theoretic model: any G/P, but abstract
 - Canonical model: correspondence, but only comin. and type-dependent
- More information?
 - More details about the quantum cohomology
 - A third LG-model: Laurent polynomial, type-independent & combinatorial, but only cominuscule & local (+sketch of proof)
 - How to define Plücker coordinates?
 - How to construct the canonical models?
- ► Related: cluster algebra structures for C[X[∨]_{can}]

 \blacktriangleright These are naturally defined on $P^\vee\backslash G^\vee$

- \blacktriangleright These are naturally defined on $P^\vee\backslash G^\vee$
 - Consider the fundamental weight representation $V(\omega_k^{\vee})$

- \blacktriangleright These are naturally defined on $P^{\vee}\backslash G^{\vee}$
 - Consider the fundamental weight representation $V(\omega_k^{\vee})$
 - It has highest weight ω_k^{\lor} , and lowest weight $w_0 \cdot \omega_k^{\lor}$

▶ These are naturally defined on $P^{\vee} \backslash G^{\vee}$

- Consider the fundamental weight representation $V(\omega_k^{\vee})$
- It has highest weight ω_k^{\vee} , and lowest weight $w_0 \cdot \omega_k^{\vee}$
- ▶ Then $V(-w_0 \cdot \omega_k^{\vee})$ has highest weight $-w_0 \cdot \omega_k^{\vee}$ and lowest $-\omega_k^{\vee}$

▶ These are naturally defined on $P^{\vee} \backslash G^{\vee}$

- Consider the fundamental weight representation $V(\omega_k^{\vee})$
- It has highest weight ω_k^{\vee} , and lowest weight $w_0 \cdot \omega_k^{\vee}$
- ▶ Then $V(-w_0 \cdot \omega_k^{\vee})$ has highest weight $-w_0 \cdot \omega_k^{\vee}$ and lowest $-\omega_k^{\vee}$
- So $V(-w_0 \cdot \omega_k^{\vee})^*$ has highest weight ω_k^{\vee} and lowest $w_0 \cdot \omega_k^{\vee}$

- Consider the fundamental weight representation $V(\omega_k^{\vee})$
- It has highest weight ω_k^{\vee} , and lowest weight $w_0 \cdot \omega_k^{\vee}$
- ▶ Then $V(-w_0 \cdot \omega_k^{\vee})$ has highest weight $-w_0 \cdot \omega_k^{\vee}$ and lowest $-\omega_k^{\vee}$
- So $V(-w_0 \cdot \omega_k^{\vee})^*$ has highest weight ω_k^{\vee} and lowest $w_0 \cdot \omega_k^{\vee}$

• (Note that
$$V(-w_0 \cdot \omega_k^{\vee})^* \cong V(\omega_k^{\vee})^{\operatorname{op}})$$

- Consider the fundamental weight representation $V(\omega_k^{\vee})$
- It has highest weight ω_k^{\vee} , and lowest weight $w_0 \cdot \omega_k^{\vee}$
- ▶ Then $V(-w_0 \cdot \omega_k^{\vee})$ has highest weight $-w_0 \cdot \omega_k^{\vee}$ and lowest $-\omega_k^{\vee}$
- So $V(-w_0\cdot\omega_k^\vee)^*$ has highest weight ω_k^\vee and lowest $w_0\cdot\omega_k^\vee$
- (Note that $V(-w_0 \cdot \omega_k^{\vee})^* \cong V(\omega_k^{\vee})^{\mathrm{op}}$)
- \blacktriangleright Let v_0^* be a highest weight vector, then $\mathbb{C} v_0^* \cdot P^{\vee} = \mathbb{C} v_0^*$

- Consider the fundamental weight representation $V(\omega_k^{\vee})$
- It has highest weight ω_k^{\vee} , and lowest weight $w_0 \cdot \omega_k^{\vee}$
- ► Then $V(-w_0 \cdot \omega_k^{\vee})$ has highest weight $-w_0 \cdot \omega_k^{\vee}$ and lowest $-\omega_k^{\vee}$
- ▶ So $V(-w_0 \cdot \omega_k^{\vee})^*$ has highest weight ω_k^{\vee} and lowest $w_0 \cdot \omega_k^{\vee}$
- (Note that $V(-w_0 \cdot \omega_k^{\vee})^* \cong V(\omega_k^{\vee})^{\mathrm{op}}$)
- Let v_0^* be a highest weight vector, then $\mathbb{C}v_0^* \cdot P^{\vee} = \mathbb{C}v_0^*$
- So we obtain an embedding $P^{\vee} \setminus G^{\vee} \hookrightarrow \mathbb{P}V(-w_0 \cdot \omega_k^{\vee})^*$

- Consider the fundamental weight representation $V(\omega_k^{\vee})$
- It has highest weight ω_k^{\vee} , and lowest weight $w_0 \cdot \omega_k^{\vee}$
- Then $V(-w_0 \cdot \omega_k^{\vee})$ has highest weight $-w_0 \cdot \omega_k^{\vee}$ and lowest $-\omega_k^{\vee}$
- ► So $V(-w_0 \cdot \omega_k^{\vee})^*$ has highest weight ω_k^{\vee} and lowest $w_0 \cdot \omega_k^{\vee}$
- (Note that $V(-w_0 \cdot \omega_k^{\vee})^* \cong V(\omega_k^{\vee})^{\mathrm{op}}$)
- Let v_0^* be a highest weight vector, then $\mathbb{C}v_0^* \cdot P^{\vee} = \mathbb{C}v_0^*$
- So we obtain an embedding $P^{\vee} \backslash G^{\vee} \hookrightarrow \mathbb{P}V(-w_0 \cdot \omega_k^{\vee})^*$
- For any weight vector $v_i \in V(-w_0 \cdot \omega_k^{\vee})$, we get the map:

$$p_i: P^{\vee}g \mapsto v_0^*(g \cdot v_i)$$

▶ These are naturally defined on $P^{\vee} \backslash G^{\vee}$

- Consider the fundamental weight representation $V(\omega_k^{\vee})$
- It has highest weight ω_k^{\vee} , and lowest weight $w_0 \cdot \omega_k^{\vee}$
- Then $V(-w_0 \cdot \omega_k^{\vee})$ has highest weight $-w_0 \cdot \omega_k^{\vee}$ and lowest $-\omega_k^{\vee}$
- ► So $V(-w_0 \cdot \omega_k^{\vee})^*$ has highest weight ω_k^{\vee} and lowest $w_0 \cdot \omega_k^{\vee}$
- (Note that $V(-w_0 \cdot \omega_k^{\vee})^* \cong V(\omega_k^{\vee})^{\mathrm{op}}$)
- ▶ Let v_0^* be a highest weight vector, then $\mathbb{C}v_0^* \cdot P^{\vee} = \mathbb{C}v_0^*$
- So we obtain an embedding $P^{\vee} \backslash G^{\vee} \hookrightarrow \mathbb{P}V(-w_0 \cdot \omega_k^{\vee})^*$
- For any weight vector $v_i \in V(-w_0 \cdot \omega_k^{\vee})$, we get the map:

$$p_i: P^{\vee}g \mapsto v_0^*(g \cdot v_i)$$

▶ If G/P_k cominuscule, then $V(\omega_k^{\vee})$ and $V(-w_0 \cdot \omega_k^{\vee})^*$ are minuscule

▶ These are naturally defined on $P^{\vee} \backslash G^{\vee}$

- Consider the fundamental weight representation $V(\omega_k^{\vee})$
- It has highest weight ω_k^{\vee} , and lowest weight $w_0 \cdot \omega_k^{\vee}$
- ▶ Then $V(-w_0 \cdot \omega_k^{\vee})$ has highest weight $-w_0 \cdot \omega_k^{\vee}$ and lowest $-\omega_k^{\vee}$
- ► So $V(-w_0 \cdot \omega_k^{\vee})^*$ has highest weight ω_k^{\vee} and lowest $w_0 \cdot \omega_k^{\vee}$
- (Note that $V(-w_0 \cdot \omega_k^{\vee})^* \cong V(\omega_k^{\vee})^{\mathrm{op}}$)
- ▶ Let v_0^* be a highest weight vector, then $\mathbb{C}v_0^* \cdot P^{\vee} = \mathbb{C}v_0^*$
- So we obtain an embedding $P^{\vee} \backslash G^{\vee} \hookrightarrow \mathbb{P}V(-w_0 \cdot \omega_k^{\vee})^*$
- For any weight vector $v_i \in V(-w_0 \cdot \omega_k^{\vee})$, we get the map:

$$p_i: P^{\vee}g \mapsto v_0^*(g \cdot v_i)$$

▶ If G/P_k cominuscule, then $V(\omega_k^{\vee})$ and $V(-w_0 \cdot \omega_k^{\vee})^*$ are minuscule

• Minimal representatives of cosets of $W_P \leftrightarrow$ "weight basis"

- Consider the fundamental weight representation $V(\omega_k^{\vee})$
- It has highest weight ω_k^{\vee} , and lowest weight $w_0 \cdot \omega_k^{\vee}$
- ▶ Then $V(-w_0 \cdot \omega_k^{\vee})$ has highest weight $-w_0 \cdot \omega_k^{\vee}$ and lowest $-\omega_k^{\vee}$
- So $V(-w_0\cdot\omega_k^\vee)^*$ has highest weight ω_k^\vee and lowest $w_0\cdot\omega_k^\vee$
- (Note that $V(-w_0 \cdot \omega_k^{\vee})^* \cong V(\omega_k^{\vee})^{\mathrm{op}}$)
- ▶ Let v_0^* be a highest weight vector, then $\mathbb{C}v_0^* \cdot P^{\vee} = \mathbb{C}v_0^*$
- So we obtain an embedding $P^{\vee} \backslash G^{\vee} \hookrightarrow \mathbb{P}V(-w_0 \cdot \omega_k^{\vee})^*$
- For any weight vector $v_i \in V(-w_0 \cdot \omega_k^{\vee})$, we get the map:

$$p_i: P^{\vee}g \mapsto v_0^*(g \cdot v_i)$$

- ▶ If G/P_k cominuscule, then $V(\omega_k^{\vee})$ and $V(-w_0 \cdot \omega_k^{\vee})^*$ are minuscule
- Minimal representatives of cosets of $W_P \leftrightarrow$ "weight basis"
- Every weight space is extremal

Summary and more info

- Small quantum cohomology: "counting intersecting curves"
- ▶ LG-models $(X^{\vee}, \mathcal{W}_q)$ satisfying $\mathbb{C}[X^{\vee} \times \mathbb{C}_q^*]/\langle \partial \mathcal{W}_q \rangle \cong qH^*(X)[q^{-1}]$
- Two LG-models for homogeneous spaces:
 - Lie-theoretic model: any G/P, but abstract
 - Canonical model: correspondence, but only comin. and type-dependent
- More information?
 - More details about the quantum cohomology
 - A third LG-model: Laurent polynomial, type-independent & combinatorial, but only cominuscule & local (+sketch of proof)
 - How to define Plücker coordinates?
 - How to construct the canonical models?
- ► Related: cluster algebra structures for C[X[∨]_{can}]

- ▶ We want an LG-model $(X_{can}^{\vee}, \mathcal{W}_{can})$ with $X_{can}^{\vee} \subset P_k^{\vee} \backslash G^{\vee}$ and $\mathcal{W}_{can} : X_{can}^{\vee} \times \mathbb{C}^* \to \mathbb{C}$ expressed in Plücker coordinates
- ▶ Preferably, $(X_{can}^{\vee}, \mathcal{W}_{can}) \cong (X_{Lie}^{\vee}, \mathcal{W}_{Lie})$

- ▶ We want an LG-model $(X_{can}^{\lor}, \mathcal{W}_{can})$ with $X_{can}^{\lor} \subset P_k^{\lor} \backslash G^{\lor}$ and $\mathcal{W}_{can} : X_{can}^{\lor} \times \mathbb{C}^* \to \mathbb{C}$ expressed in Plücker coordinates
- ▶ Preferably, $(X_{can}^{\vee}, \mathcal{W}_{can}) \cong (X_{Lie}^{\vee}, \mathcal{W}_{Lie})$
- So far, no type-independent method is known

- ▶ We want an LG-model $(X_{can}^{\lor}, \mathcal{W}_{can})$ with $X_{can}^{\lor} \subset P_k^{\lor} \backslash G^{\lor}$ and $\mathcal{W}_{can} : X_{can}^{\lor} \times \mathbb{C}^* \to \mathbb{C}$ expressed in Plücker coordinates
- ▶ Preferably, $(X_{can}^{\lor}, \mathcal{W}_{can}) \cong (X_{Lie}^{\lor}, \mathcal{W}_{Lie})$
- So far, no type-independent method is known
- There is a general strategy for the case-by-case approach

- ▶ We want an LG-model $(X_{can}^{\lor}, \mathcal{W}_{can})$ with $X_{can}^{\lor} \subset P_k^{\lor} \backslash G^{\lor}$ and $\mathcal{W}_{can} : X_{can}^{\lor} \times \mathbb{C}^* \to \mathbb{C}$ expressed in Plücker coordinates
- ▶ Preferably, $(X_{can}^{\vee}, \mathcal{W}_{can}) \cong (X_{Lie}^{\vee}, \mathcal{W}_{Lie})$
- So far, no type-independent method is known
- There is a general strategy for the case-by-case approach
 - ▶ Recall $z \in \mathcal{Z}_P^{\vee}$ uniquely determined by $(u_-, t) \in U_-^P \times T^P \cong U_-^P \times \mathbb{C}^*$

• Preferably,
$$(X_{\operatorname{can}}^{\vee}, \mathcal{W}_{\operatorname{can}}) \cong (X_{\operatorname{Lie}}^{\vee}, \mathcal{W}_{\operatorname{Lie}})$$

- So far, no type-independent method is known
- There is a general strategy for the case-by-case approach
 - ▶ Recall $z \in \mathbb{Z}_P^{\vee}$ uniquely determined by $(u_-, t) \in U_-^P \times T^P \cong U_-^P \times \mathbb{C}^*$
 - Since $\mathcal{Z}_P^{\vee} \cong X_{\text{Lie}}^{\vee} \times \mathbb{C}^*$, we find $X_{\text{Lie}}^{\vee} \cong U_-^P$

• Preferably,
$$(X_{\operatorname{can}}^{\vee}, \mathcal{W}_{\operatorname{can}}) \cong (X_{\operatorname{Lie}}^{\vee}, \mathcal{W}_{\operatorname{Lie}})$$

- So far, no type-independent method is known
- There is a general strategy for the case-by-case approach
 - ▶ Recall $z \in \mathcal{Z}_P^{\vee}$ uniquely determined by $(u_-, t) \in U_-^P \times T^P \cong U_-^P \times \mathbb{C}^*$
 - Since $\mathcal{Z}_P^{\vee} \cong X_{\text{Lie}}^{\vee} \times \mathbb{C}^*$, we find $X_{\text{Lie}}^{\vee} \cong U_-^P$
 - ▶ Geiβ-Leclerc-Schroër (2011) gave a presentation of C[U^P_]

• Preferably,
$$(X_{\operatorname{can}}^{\vee}, \mathcal{W}_{\operatorname{can}}) \cong (X_{\operatorname{Lie}}^{\vee}, \mathcal{W}_{\operatorname{Lie}})$$

- So far, no type-independent method is known
- There is a general strategy for the case-by-case approach
 - ▶ Recall $z \in \mathcal{Z}_P^{\vee}$ uniquely determined by $(u_{-,}t) \in U_-^P \times T^P \cong U_-^P \times \mathbb{C}^*$
 - Since $\mathcal{Z}_P^{\vee} \cong X_{\text{Lie}}^{\vee} \times \mathbb{C}^*$, we find $X_{\text{Lie}}^{\vee} \cong U_-^P$
 - Geiß-Leclerc-Schroër (2011) gave a presentation of $\mathbb{C}[U_{-}^{P}]$
 - Need to re-express this presentation in Plücker coordinates

• Preferably,
$$(X_{\operatorname{can}}^{\vee}, \mathcal{W}_{\operatorname{can}}) \cong (X_{\operatorname{Lie}}^{\vee}, \mathcal{W}_{\operatorname{Lie}})$$

- So far, no type-independent method is known
- There is a general strategy for the case-by-case approach
 - ▶ Recall $z \in \mathcal{Z}_P^{\vee}$ uniquely determined by $(u_{-,}t) \in U_-^P \times T^P \cong U_-^P \times \mathbb{C}^*$
 - Since $\mathcal{Z}_P^{\vee} \cong X_{\operatorname{Lie}}^{\vee} \times \mathbb{C}^*$, we find $X_{\operatorname{Lie}}^{\vee} \cong U_-^P$
 - Geiß-Leclerc-Schroër (2011) gave a presentation of $\mathbb{C}[U_{-}^{P}]$
 - Need to re-express this presentation in Plücker coordinates

• This gives
$$X_{\operatorname{can}}^{\vee} \subset P_k^{\vee} \backslash G^{\vee}$$

• Preferably,
$$(X_{\operatorname{can}}^{\vee}, \mathcal{W}_{\operatorname{can}}) \cong (X_{\operatorname{Lie}}^{\vee}, \mathcal{W}_{\operatorname{Lie}})$$

- So far, no type-independent method is known
- There is a general strategy for the case-by-case approach
 - ▶ Recall $z \in \mathcal{Z}_P^{\vee}$ uniquely determined by $(u_-, t) \in U_-^P \times T^P \cong U_-^P \times \mathbb{C}^*$
 - Since $\mathcal{Z}_P^{\vee} \cong X_{\text{Lie}}^{\vee} \times \mathbb{C}^*$, we find $X_{\text{Lie}}^{\vee} \cong U_-^P$
 - Geiß-Leclerc-Schroër (2011) gave a presentation of $\mathbb{C}[U_{-}^{P}]$
 - Need to re-express this presentation in Plücker coordinates
 - This gives $X_{\operatorname{can}}^{\vee} \subset P_k^{\vee} \setminus G^{\vee}$
 - ▶ Next, W_{Lie} restricted to Z_P° is Laurent polynomial

▶ Preferably,
$$(X_{can}^{\lor}, \mathcal{W}_{can}) \cong (X_{Lie}^{\lor}, \mathcal{W}_{Lie})$$

- So far, no type-independent method is known
- There is a general strategy for the case-by-case approach
 - ▶ Recall $z \in \mathcal{Z}_P^{\vee}$ uniquely determined by $(u_-, t) \in U_-^P \times T^P \cong U_-^P \times \mathbb{C}^*$
 - Since $\mathcal{Z}_P^{\vee} \cong X_{\text{Lie}}^{\vee} \times \mathbb{C}^*$, we find $X_{\text{Lie}}^{\vee} \cong U_-^P$
 - ▶ Geiβ-Leclerc-Schroër (2011) gave a presentation of C[U^P_]
 - Need to re-express this presentation in Plücker coordinates
 - This gives $X_{\operatorname{can}}^{\vee} \subset P_k^{\vee} \setminus G^{\vee}$
 - ▶ Next, W_{Lie} restricted to Z_P° is Laurent polynomial
 - Find a Plücker coordinate expression $\rightsquigarrow W_{can}$

▶ Preferably,
$$(X_{can}^{\lor}, \mathcal{W}_{can}) \cong (X_{Lie}^{\lor}, \mathcal{W}_{Lie})$$

- So far, no type-independent method is known
- There is a general strategy for the case-by-case approach
 - ▶ Recall $z \in \mathcal{Z}_P^{\vee}$ uniquely determined by $(u_-, t) \in U_-^P \times T^P \cong U_-^P \times \mathbb{C}^*$
 - Since $\mathcal{Z}_P^{\vee} \cong X_{\text{Lie}}^{\vee} \times \mathbb{C}^*$, we find $X_{\text{Lie}}^{\vee} \cong U_-^P$
 - ▶ Geiβ-Leclerc-Schroër (2011) gave a presentation of C[U^P_]
 - Need to re-express this presentation in Plücker coordinates
 - This gives $X_{\operatorname{can}}^{\vee} \subset P_k^{\vee} \setminus G^{\vee}$
 - ▶ Next, W_{Lie} restricted to Z_P° is Laurent polynomial
 - ▶ Find a Plücker coordinate expression $\rightsquigarrow W_{can}$
 - ▶ By construction: $(X_{can}^{\vee}, \mathcal{W}_{can}) \cong (X_{Lie}^{\vee}, \mathcal{W}_{Lie})$

Summary and more info

- Small quantum cohomology: "counting intersecting curves"
- ▶ LG-models $(X^{\vee}, \mathcal{W}_q)$ satisfying $\mathbb{C}[X^{\vee} \times \mathbb{C}_q^*]/\langle \partial \mathcal{W}_q \rangle \cong qH^*(X)[q^{-1}]$
- Two LG-models for homogeneous spaces:
 - Lie-theoretic model: any G/P, but abstract
 - Canonical model: correspondence, but only comin. and type-dependent
- More information?
 - More details about the quantum cohomology
 - A third LG-model: Laurent polynomial, type-independent & combinatorial, but only cominuscule & local (+sketch of proof)
 - How to define Plücker coordinates?
 - How to construct the canonical models?
- ► Related: cluster algebra structures for C[X[∨]_{can}]

$$\blacktriangleright (H^*(X), \cup) \rightsquigarrow (qH^*(X), *)$$

$$\begin{array}{l} \bullet \ \left(H^*(X), \cup\right) \ \rightsquigarrow \ \left(qH^*(X), *\right) \\ qH^*(X)/\langle q \rangle \cong H^*(X) \text{ and } * \equiv \cup \ \mathrm{mod} \ q \end{array}$$

$$(H^*(X), \cup) \rightsquigarrow (qH^*(X), *) qH^*(X)/\langle q \rangle \cong H^*(X) \text{ and } * \equiv \cup \mod q$$

• Consider \mathbb{CP}^n , so $H^*(\mathbb{CP}^n) \cong \mathbb{C}[h]/\langle h^{n+1} \rangle$, with $h^i \cup h^j = 1 \cdot h^{i+j}$

•
$$(H^*(X), \cup) \rightsquigarrow (qH^*(X), *)$$

 $qH^*(X)/\langle q \rangle \cong H^*(X) \text{ and } * \equiv \cup \mod q$

▶ Consider \mathbb{CP}^n , so $H^*(\mathbb{CP}^n) \cong \mathbb{C}[h]/\langle h^{n+1} \rangle$, with $h^i \cup h^j = 1 \cdot h^{i+j}$

$$1 = \int_{\mathbb{CP}^n} h^i \cup h^j \cup h^{n-i-j} = \langle h^i \cdot h^j \cdot h^{n-i-j} \rangle_0$$

•
$$(H^*(X), \cup) \rightsquigarrow (qH^*(X), *)$$

 $qH^*(X)/\langle q \rangle \cong H^*(X) \text{ and } * \equiv \cup \mod q$

▶ Consider \mathbb{CP}^n , so $H^*(\mathbb{CP}^n) \cong \mathbb{C}[h]/\langle h^{n+1} \rangle$, with $h^i \cup h^j = 1 \cdot h^{i+j}$

$$1 = \int_{\mathbb{CP}^n} h^i \cup h^j \cup h^{n-i-j} = \langle h^i \cdot h^j \cdot h^{n-i-j} \rangle_0$$

is the number of *points* intersecting h^i , h^j and h^{n-i-j} Note that $\langle h^i \cdot h^j \cdot h^{n-k} \rangle_0 = 0$ for $k \neq i+j$,

$$(H^*(X), \cup) \rightsquigarrow (qH^*(X), *)$$
$$qH^*(X)/\langle q \rangle \cong H^*(X) \text{ and } * \equiv \cup \mod q$$

• Consider \mathbb{CP}^n , so $H^*(\mathbb{CP}^n) \cong \mathbb{C}[h]/\langle h^{n+1} \rangle$, with $h^i \cup h^j = 1 \cdot h^{i+j}$

$$1 = \int_{\mathbb{CP}^n} h^i \cup h^j \cup h^{n-i-j} = \langle h^i \cdot h^j \cdot h^{n-i-j} \rangle_0$$

is the number of *points* intersecting h^i , h^j and h^{n-i-j}

▶ Note that $\langle h^i \cdot h^j \cdot h^{n-k} \rangle_0 = 0$ for $k \neq i+j$, so $h^i \cup h^j = \sum_{k=0}^n \langle h^i \cdot h^j \cdot h^{n-k} \rangle_0 \cdot h^k$

$$(H^*(X), \cup) \rightsquigarrow (qH^*(X), *)$$
$$qH^*(X)/\langle q \rangle \cong H^*(X) \text{ and } * \equiv \cup \mod q$$

▶ Consider \mathbb{CP}^n , so $H^*(\mathbb{CP}^n) \cong \mathbb{C}[h]/\langle h^{n+1} \rangle$, with $h^i \cup h^j = 1 \cdot h^{i+j}$

$$1 = \int_{\mathbb{CP}^n} h^i \cup h^j \cup h^{n-i-j} = \langle h^i \cdot h^j \cdot h^{n-i-j} \rangle_0$$

- ► Note that $\langle h^i \cdot h^j \cdot h^{n-k} \rangle_0 = 0$ for $k \neq i+j$, so $h^i \cup h^j = \sum_{k=0}^n \langle h^i \cdot h^j \cdot h^{n-k} \rangle_0 \cdot h^k$
- Write (α · β · γ)k for the number of *degree-k curves* intersecting α, β and γ,

$$(H^*(X), \cup) \rightsquigarrow (qH^*(X), *)$$
$$qH^*(X)/\langle q \rangle \cong H^*(X) \text{ and } * \equiv \cup \mod q$$

▶ Consider \mathbb{CP}^n , so $H^*(\mathbb{CP}^n) \cong \mathbb{C}[h]/\langle h^{n+1} \rangle$, with $h^i \cup h^j = 1 \cdot h^{i+j}$

$$1 = \int_{\mathbb{CP}^n} h^i \cup h^j \cup h^{n-i-j} = \langle h^i \cdot h^j \cdot h^{n-i-j} \rangle_0$$

- ► Note that $\langle h^i \cdot h^j \cdot h^{n-k} \rangle_0 = 0$ for $k \neq i+j$, so $h^i \cup h^j = \sum_{k=0}^n \langle h^i \cdot h^j \cdot h^{n-k} \rangle_0 \cdot h^k$
- Write (α · β · γ)_k for the number of *degree-k curves* intersecting α, β and γ, this is called a *Gromov-Witten invariant*.

$$(H^*(X), \cup) \rightsquigarrow (qH^*(X), *)$$
$$qH^*(X)/\langle q \rangle \cong H^*(X) \text{ and } * \equiv \cup \mod q$$

▶ Consider \mathbb{CP}^n , so $H^*(\mathbb{CP}^n) \cong \mathbb{C}[h]/\langle h^{n+1} \rangle$, with $h^i \cup h^j = 1 \cdot h^{i+j}$

$$1 = \int_{\mathbb{CP}^n} h^i \cup h^j \cup h^{n-i-j} = \langle h^i \cdot h^j \cdot h^{n-i-j} \rangle_0$$

- ► Note that $\langle h^i \cdot h^j \cdot h^{n-k} \rangle_0 = 0$ for $k \neq i+j$, so $h^i \cup h^j = \sum_{k=0}^n \langle h^i \cdot h^j \cdot h^{n-k} \rangle_0 \cdot h^k$
- Write (α · β · γ)_k for the number of *degree-k curves* intersecting α, β and γ, this is called a *Gromov-Witten invariant*.

$$h^{i} * h^{j} = \sum_{d=0}^{\infty} \sum_{k=0}^{n} \langle h^{i} \cdot h^{j} \cdot h^{n-k} \rangle_{d} h^{k} q^{d}$$

Summary and more info

- Small quantum cohomology: "counting intersecting curves"
- ▶ LG-models $(X^{\vee}, \mathcal{W}_q)$ satisfying $\mathbb{C}[X^{\vee} \times \mathbb{C}_q^*]/\langle \partial \mathcal{W}_q \rangle \cong qH^*(X)[q^{-1}]$
- Two LG-models for homogeneous spaces:
 - Lie-theoretic model: any G/P, but abstract
 - Canonical model: correspondence, but only comin. and type-dependent
- More information?
 - More details about the quantum cohomology
 - A third LG-model: Laurent polynomial, type-independent & combinatorial, but only cominuscule & local (+sketch of proof)
 - How to define Plücker coordinates?
 - How to construct the canonical models?
- ► Related: cluster algebra structures for C[X[∨]_{can}]

• Gromov-Witten invariants $\langle \gamma_1 \cdots \gamma_n \rangle_{\beta}$:

• Gromov-Witten invariants $\langle \gamma_1 \cdots \gamma_n \rangle_{\beta}$: for $\beta \in H_2(X)$ and $\gamma_k \in H^*(X)$,

• Gromov-Witten invariants $\langle \gamma_1 \cdots \gamma_n \rangle_{\beta}$: for $\beta \in H_2(X)$ and $\gamma_k \in H^*(X)$,

$$\langle \gamma_1 \cdots \gamma_n \rangle_{\beta} = \int_{\overline{M}_{0,n}(X,\beta)} \operatorname{ev}_1^*(\gamma_1) \cup \ldots \cup \operatorname{ev}_n^*(\gamma_n),$$

• Gromov-Witten invariants $\langle \gamma_1 \cdots \gamma_n \rangle_{\beta}$: for $\beta \in H_2(X)$ and $\gamma_k \in H^*(X)$,

$$\langle \gamma_1 \cdots \gamma_n \rangle_{\beta} = \int_{\overline{M}_{0,n}(X,\beta)} \operatorname{ev}_1^*(\gamma_1) \cup \ldots \cup \operatorname{ev}_n^*(\gamma_n),$$

where $\overline{M}_{n,\beta}$ is the moduli space of tuples $s = (C, p_1, \dots, p_n; \mu)$,

21/9

• Gromov-Witten invariants $\langle \gamma_1 \cdots \gamma_n \rangle_{\beta}$: for $\beta \in H_2(X)$ and $\gamma_k \in H^*(X)$,

$$\langle \gamma_1 \cdots \gamma_n \rangle_{\beta} = \int_{\overline{M}_{0,n}(X,\beta)} \operatorname{ev}_1^*(\gamma_1) \cup \ldots \cup \operatorname{ev}_n^*(\gamma_n),$$

where $\overline{M}_{n,\beta}$ is the moduli space of tuples $s = (C, p_1, \dots, p_n; \mu)$, with \triangleright C a projective, connected nodal curve of genus 0 and $p_1, \dots, p_n \in C$

21/9

• Gromov-Witten invariants $\langle \gamma_1 \cdots \gamma_n \rangle_{\beta}$: for $\beta \in H_2(X)$ and $\gamma_k \in H^*(X)$,

$$\langle \gamma_1 \cdots \gamma_n \rangle_{\beta} = \int_{\overline{M}_{0,n}(X,\beta)} \operatorname{ev}_1^*(\gamma_1) \cup \ldots \cup \operatorname{ev}_n^*(\gamma_n),$$

where $\overline{M}_{n,\beta}$ is the moduli space of tuples $s = (C, p_1, \dots, p_n; \mu)$, with $\blacktriangleright C$ a projective, connected nodal curve of genus 0 and $p_1, \dots, p_n \in C$ $\blacktriangleright \mu : C \to X$ a stable map with $\mu_*([C]) = \beta$;

• Gromov-Witten invariants $\langle \gamma_1 \cdots \gamma_n \rangle_{\beta}$: for $\beta \in H_2(X)$ and $\gamma_k \in H^*(X)$,

$$\langle \gamma_1 \cdots \gamma_n \rangle_{\beta} = \int_{\overline{M}_{0,n}(X,\beta)} \operatorname{ev}_1^*(\gamma_1) \cup \ldots \cup \operatorname{ev}_n^*(\gamma_n),$$

where $\overline{M}_{n,\beta}$ is the moduli space of tuples $s = (C, p_1, \dots, p_n; \mu)$, with $\blacktriangleright C$ a projective, connected nodal curve of genus 0 and $p_1, \dots, p_n \in C$ $\blacktriangleright \mu : C \to X$ a stable map with $\mu_*([C]) = \beta$; and where $\operatorname{ev}_i : \overline{M}_{n,\beta} \to X$ maps $(C, p_1, \dots, p_n; \mu)$ to $\mu(p_i)$.

• Gromov-Witten invariants $\langle \gamma_1 \cdots \gamma_n \rangle_{\beta}$: for $\beta \in H_2(X)$ and $\gamma_k \in H^*(X)$,

$$\langle \gamma_1 \cdots \gamma_n \rangle_{\beta} = \int_{\overline{M}_{0,n}(X,\beta)} \operatorname{ev}_1^*(\gamma_1) \cup \ldots \cup \operatorname{ev}_n^*(\gamma_n),$$

where $\overline{M}_{n,\beta}$ is the moduli space of tuples $s = (C, p_1, \dots, p_n; \mu)$, with $\blacktriangleright C$ a projective, connected nodal curve of genus 0 and $p_1, \dots, p_n \in C$ $\blacktriangleright \mu : C \to X$ a stable map with $\mu_*([C]) = \beta$; and where $\operatorname{ev}_i : \overline{M}_{n,\beta} \to X$ maps $(C, p_1, \dots, p_n; \mu)$ to $\mu(p_i)$.

• Gromov-Witten invariants $\langle \gamma_1 \cdots \gamma_n \rangle_{\beta}$: for $\beta \in H_2(X)$ and $\gamma_k \in H^*(X)$,

$$\langle \gamma_1 \cdots \gamma_n \rangle_{\beta} = \int_{\overline{M}_{0,n}(X,\beta)} \operatorname{ev}_1^*(\gamma_1) \cup \ldots \cup \operatorname{ev}_n^*(\gamma_n),$$

where $\overline{M}_{n,\beta}$ is the moduli space of tuples $s = (C, p_1, \dots, p_n; \mu)$, with $\triangleright \ C$ a projective, connected nodal curve of genus 0 and $p_1, \dots, p_n \in C$ $\triangleright \ \mu : C \to X$ a stable map with $\mu_*([C]) = \beta$; and where $\operatorname{ev}_i : \overline{M}_{n,\beta} \to X$ maps $(C, p_1, \dots, p_n; \mu)$ to $\mu(p_i)$. \triangleright Given $Y \subset X$, $\operatorname{ev}_i(s) \cap Y \neq \emptyset$ when $Y \ni \mu(p_i)$;

21/9

• Gromov-Witten invariants $\langle \gamma_1 \cdots \gamma_n \rangle_{\beta}$: for $\beta \in H_2(X)$ and $\gamma_k \in H^*(X)$,

$$\langle \gamma_1 \cdots \gamma_n \rangle_{\beta} = \int_{\overline{M}_{0,n}(X,\beta)} \operatorname{ev}_1^*(\gamma_1) \cup \ldots \cup \operatorname{ev}_n^*(\gamma_n),$$

where $\overline{M}_{n,\beta}$ is the moduli space of tuples $s = (C, p_1, \dots, p_n; \mu)$, with $\blacktriangleright C$ a projective, connected nodal curve of genus 0 and $p_1, \dots, p_n \in C$ $\blacktriangleright \mu : C \to X$ a stable map with $\mu_*([C]) = \beta$; and where $\operatorname{ev}_i : \overline{M}_{n,\beta} \to X$ maps $(C, p_1, \dots, p_n; \mu)$ to $\mu(p_i)$. \blacktriangleright Given $Y \subset X$, $\operatorname{ev}_i(s) \cap Y \neq \emptyset$ when $Y \ni \mu(p_i)$; so $\operatorname{ev}_i^*([Y])$ is (the class of) the locus of curves with $\mu(p_i) \in Y$;

• Gromov-Witten invariants $\langle \gamma_1 \cdots \gamma_n \rangle_{\beta}$: for $\beta \in H_2(X)$ and $\gamma_k \in H^*(X)$,

$$\langle \gamma_1 \cdots \gamma_n \rangle_{\beta} = \int_{\overline{M}_{0,n}(X,\beta)} \operatorname{ev}_1^*(\gamma_1) \cup \ldots \cup \operatorname{ev}_n^*(\gamma_n),$$

where $\overline{M}_{n,\beta}$ is the moduli space of tuples $s = (C, p_1, \ldots, p_n; \mu)$, with $\blacktriangleright C$ a projective, connected nodal curve of genus 0 and $p_1, \ldots, p_n \in C$ $\blacktriangleright \mu : C \to X$ a stable map with $\mu_*([C]) = \beta$; and where $\operatorname{ev}_i : \overline{M}_{n,\beta} \to X$ maps $(C, p_1, \ldots, p_n; \mu)$ to $\mu(p_i)$. \blacktriangleright Given $Y \subset X$, $\operatorname{ev}_i(s) \cap Y \neq \emptyset$ when $Y \ni \mu(p_i)$; so $\operatorname{ev}_i^*([Y])$ is (the class of) the locus of curves with $\mu(p_i) \in Y$; so $\operatorname{ev}_1^*([Y_1]) \cup \ldots \cup \operatorname{ev}_n^*([Y_n])$ is the locus of curves such that $\mu(p_i) \in Y_i$ for each i;

• Gromov-Witten invariants $\langle \gamma_1 \cdots \gamma_n \rangle_{\beta}$: for $\beta \in H_2(X)$ and $\gamma_k \in H^*(X)$,

$$\langle \gamma_1 \cdots \gamma_n \rangle_{\beta} = \int_{\overline{M}_{0,n}(X,\beta)} \operatorname{ev}_1^*(\gamma_1) \cup \ldots \cup \operatorname{ev}_n^*(\gamma_n),$$

where $\overline{M}_{n,\beta}$ is the moduli space of tuples $s = (C, p_1, \dots, p_n; \mu)$, with $\triangleright \ C$ a projective, connected nodal curve of genus 0 and $p_1, \dots, p_n \in C$ $\triangleright \ \mu : C \to X$ a stable map with $\mu_*([C]) = \beta$; and where $\operatorname{ev}_i : \overline{M}_{n,\beta} \to X$ maps $(C, p_1, \dots, p_n; \mu)$ to $\mu(p_i)$. \triangleright Given $Y \subset X$, $\operatorname{ev}_i(s) \cap Y \neq \emptyset$ when $Y \ni \mu(p_i)$; so $\operatorname{ev}_i^*([Y])$ is (the class of) the locus of curves with $\mu(p_i) \in Y$; so $\operatorname{ev}_1^*([Y_1]) \cup \ldots \cup \operatorname{ev}_n^*([Y_n])$ is the locus of curves such that $\mu(p_i) \in Y_i$ for each i; so $I_\beta([Y_1] \cdots [Y_n])$ counts the number of curves meeting Y_i in $\mu(p_i)$.

Summary and more info

- Small quantum cohomology: "counting intersecting curves"
- ▶ LG-models $(X^{\vee}, \mathcal{W}_q)$ satisfying $\mathbb{C}[X^{\vee} \times \mathbb{C}_q^*]/\langle \partial \mathcal{W}_q \rangle \cong qH^*(X)[q^{-1}]$
- Two LG-models for homogeneous spaces:
 - Lie-theoretic model: any G/P, but abstract
 - Canonical model: correspondence, but only comin. and type-dependent
- More information?
 - More details about the quantum cohomology
 - A third LG-model: Laurent polynomial, type-independent & combinatorial, but only cominuscule & local (+sketch of proof)
 - How to define Plücker coordinates?
 - How to construct the canonical models?
- ▶ Related: cluster algebra structures for C[X[∨]_{can}]

Cluster algebra structure of $\mathbb{C}[X_{can}^{\vee}]$

• Example:
$$Q_6 = \text{Spin}_8/P_1$$
 of type D_4

Cluster algebra structure of $\mathbb{C}[X_{can}^{\vee}]$

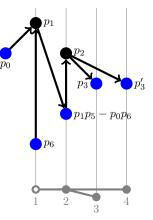
• Example:
$$Q_6 = \text{Spin}_8/P_1$$
 of type D_4

•
$$\mathbb{C}[X_{\text{can}}^{\vee}] = \mathbb{C}[p_0^{\pm 1}, p_1, p_2, p_3^{\pm 1}, (p_3')^{\pm 1}, p_4, p_5, p_6^{\pm 1}][(p_1p_5 - p_0p_6)^{-1}]$$

Cluster algebra structure of $\mathbb{C}[X_{ ext{can}}^{ee}]$

• Example:
$$Q_6 = \text{Spin}_8/P_1$$
 of type D_4

- $\mathbb{C}[X_{\text{can}}^{\vee}] = \mathbb{C}[p_0^{\pm 1}, p_1, p_2, p_3^{\pm 1}, (p_3')^{\pm 1}, p_4, p_5, p_6^{\pm 1}][(p_1p_5 p_0p_6)^{-1}]$
- $\mathbb{C}[X_{\operatorname{can}}^{\vee}]$ has a cluster algebra structure:



23/9

Cluster algebra structure of $\mathbb{C}[\overline{X_{\mathrm{can}}^{\vee}}]$

► Example:
$$Q_6 = \text{Spin}_8/P_1$$
 of type D_4
► $\mathbb{C}[X_{\text{can}}^{\vee}] = \mathbb{C}[p_0^{\pm 1}, p_1, p_2, p_3^{\pm 1}, (p_3')^{\pm 1}, p_4, p_5, p_6^{\pm 1}][(p_1p_5 - p_0p_6)^{-1}]$
► $\mathbb{C}[X_{\text{can}}^{\vee}]$ has a cluster algebra structure:
► $\mu(p_1) = \frac{1}{p_1}(p_0p_6 + (p_1p_5 - p_0p_6)) = p_5$

4

3

3

 p_6

2

4

3

 p_6

Example:
$$Q_6 = \text{Spin}_8/P_1$$
 of type D_4
 $\mathbb{C}[X_{\text{can}}^{\vee}] = \mathbb{C}[p_0^{\pm 1}, p_1, p_2, p_3^{\pm 1}, (p_3')^{\pm 1}, p_4, p_5, p_6^{\pm 1}][(p_1p_5 - p_0p_6)^{-1}]$
 $\mathbb{C}[X_{\text{can}}^{\vee}]$ has a cluster algebra structure:
 $\mu(p_1) = \frac{1}{p_1} \left(p_0p_6 + (p_1p_5 - p_0p_6) \right) = p_5$
Frozen variables are denominators of
 $\mathcal{W}_{\text{can}} = \frac{p_1}{p_0} + \frac{p_2p_5}{p_1p_5 - p_0p_6} + \frac{p_4}{p_3} + \frac{p_4}{p_3'} + q\frac{p_1}{p_6}$
Requires a "Plücker relation"
 $p_3p_3' - p_2p_4 + p_1p_5 - p_0p_6 = 0$
 $\mu(p_2) = \frac{1}{p_2} \left((p_1p_5 - p_0p_6) + p_3p_3' \right)$

3

2

Example:
$$Q_6 = \text{Spin}_8/P_1$$
 of type D_4
 $\mathbb{C}[X_{\text{can}}^{\vee}] = \mathbb{C}[p_0^{\pm 1}, p_1, p_2, p_3^{\pm 1}, (p_3')^{\pm 1}, p_4, p_5, p_6^{\pm 1}][(p_1p_5 - p_0p_6)^{-1}]$
 $\mathbb{C}[X_{\text{can}}^{\vee}]$ has a cluster algebra structure:
 $\mu(p_1) = \frac{1}{p_1} \left(p_0p_6 + (p_1p_5 - p_0p_6) \right) = p_5$
Frozen variables are denominators of
 $\mathcal{W}_{\text{can}} = \frac{p_1}{p_0} + \frac{p_2p_5}{p_1p_5 - p_0p_6} + \frac{p_4}{p_3} + \frac{p_4}{p_3'} + q\frac{p_1}{p_6}$
Requires a "Plücker relation"
 $p_3p_3' - p_2p_4 + p_1p_5 - p_0p_6 = 0$
 $\mu(p_2) = \frac{1}{p_2} \left((p_1p_5 - p_0p_6) + p_3p_3' \right) = p_4$

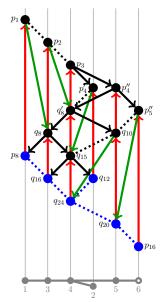
3

2

Example:
$$Q_6 = \text{Spin}_8/P_1$$
 of type D_4
 $\mathbb{C}[X_{\text{can}}^{\vee}] = \mathbb{C}[p_0^{\pm 1}, p_1, p_2, p_3^{\pm 1}, (p_3')^{\pm 1}, p_4, p_5, p_6^{\pm 1}][(p_1p_5 - p_0p_6)^{-1}]$
 $\mathbb{C}[X_{\text{can}}^{\vee}]$ has a cluster algebra structure:
 $\mu(p_1) = \frac{1}{p_1}(p_0p_6 + (p_1p_5 - p_0p_6)) = p_5$
Frozen variables are denominators of
 $W_{\text{can}} = \frac{p_1}{p_0} + \frac{p_2p_5}{p_1p_5 - p_0p_6} + \frac{p_4}{p_3} + \frac{p_4}{p_3'} + q\frac{p_1}{p_6}$
Requires a "Plücker relation"
 $p_3p_3' - p_2p_4 + p_1p_5 - p_0p_6 = 0$
 $\mu(p_2) = \frac{1}{p_2}((p_1p_5 - p_0p_6) + p_3p_3') = p_4$
We constructed cluster structures for
the exceptional family

3

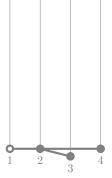
For E_6/P_6 , the mirror has the following cluster structure:



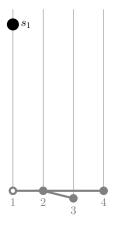
• Example:
$$Q_6 = G/P$$
 for G of type D_4 : $\frac{1}{2} = \frac{2}{4} \int_{-4}^{3} \frac{1}{4} \frac{1}{4} \int_{-4}^{2} \frac{1}{4} \frac{1}{4} \int_{-4}^{2} \frac{1}{4} \frac{1}{4} \int_{-4}^{2} \frac{1}{4} \int_{-4}^{$

• Example:
$$Q_6 = G/P$$
 for G of type D_4 : $\frac{1}{2}$

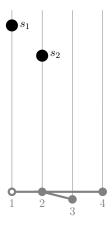
• Example:
$$Q_6 = G/P$$
 for G of type D_4 : $\frac{1}{2}$



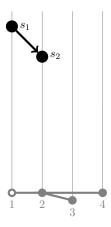
• Example:
$$Q_6 = G/P$$
 for G of type D_4 : $\frac{1}{2}$



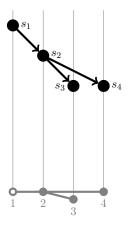
• Example:
$$Q_6 = G/P$$
 for G of type D_4 : $\frac{1}{2}$



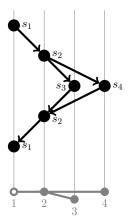
• Example:
$$Q_6 = G/P$$
 for G of type D_4 : a^3
• $w^P = s_1 s_2(s_3 s_4) s_2 s_1$ gives a quiver:



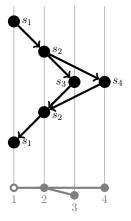
• Example:
$$Q_6 = G/P$$
 for G of type D_4 : $u^2 = s_1 s_2(s_3 s_4) s_2 s_1$ gives a quiver:



• Example:
$$Q_6 = G/P$$
 for G of type D_4 : $u^2 = w^2$
• $w^P = s_1 s_2 (s_3 s_4) s_2 s_1$ gives a quiver:

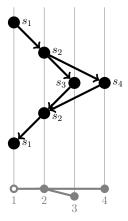


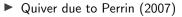
• Example:
$$Q_6 = G/P$$
 for G of type D_4 : $\frac{1}{2}$



Quiver due to Perrin (2007)

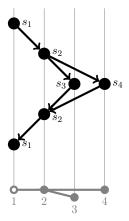
• Example:
$$Q_6 = G/P$$
 for G of type D_4 : $\frac{1}{2}$

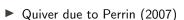




- Gives basis of cohomology
- Calculates Poincaré duality

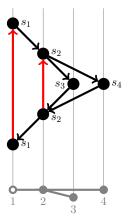
• Example:
$$Q_6 = G/P$$
 for G of type D_4 : $\frac{1}{2}$

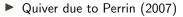




- Gives basis of cohomology
- Calculates Poincaré duality
- Conjectural construction:

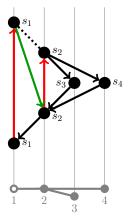
• Example:
$$Q_6 = G/P$$
 for G of type D_4 : $\frac{1}{2}$

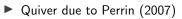




- Gives basis of cohomology
- Calculates Poincaré duality
- Conjectural construction:
 - Draw arrows up in the columns

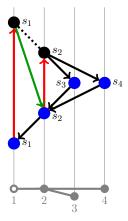
• Example:
$$Q_6 = G/P$$
 for G of type D_4 : $\frac{1}{2}$

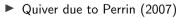




- Gives basis of cohomology
- Calculates Poincaré duality
- Conjectural construction:
 - Draw arrows up in the columns
 - ► For every "quadric" subdiagram $s_{i_1} \cdots s_{i_r} (s_{j_1} s_{j_2}) s_{i_r} \cdots s_{i_1}$ move head of $s_{i_t} \rightarrow s_{i_{t+1}}$ to second occurrence of $s_{i_{t+1}}$

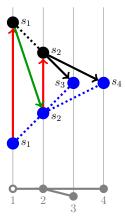
• Example:
$$Q_6 = G/P$$
 for G of type D_4 : $\frac{1}{2}$

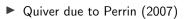




- Gives basis of cohomology
- Calculates Poincaré duality
- Conjectural construction:
 - Draw arrows up in the columns
 - For every "quadric" subdiagram $s_{i_1} \cdots s_{i_r} (s_{j_1} s_{j_2}) s_{i_r} \cdots s_{i_1}$ move head of $s_{i_t} \rightarrow s_{i_{t+1}}$ to second occurrence of $s_{i_{t+1}}$
 - Freeze last occurrence of each s_i

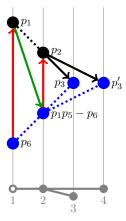
• Example:
$$Q_6 = G/P$$
 for G of type D_4 : $\frac{1}{2}$

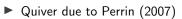




- Gives basis of cohomology
- Calculates Poincaré duality
- Conjectural construction:
 - Draw arrows up in the columns
 - ► For every "quadric" subdiagram $s_{i_1} \cdots s_{i_r} (s_{j_1} s_{j_2}) s_{i_r} \cdots s_{i_1}$ move head of $s_{i_t} \rightarrow s_{i_{t+1}}$ to second occurrence of $s_{i_{t+1}}$
 - Freeze last occurrence of each s_i

• Example:
$$Q_6 = G/P$$
 for G of type D_4 : $\frac{1}{2}$





- Gives basis of cohomology
- Calculates Poincaré duality
- Conjectural construction:
 - Draw arrows up in the columns
 - ► For every "quadric" subdiagram $s_{i_1} \cdots s_{i_r} (s_{j_1} s_{j_2}) s_{i_r} \cdots s_{i_1}$ move head of $s_{i_t} \rightarrow s_{i_{t+1}}$ to second occurrence of $s_{i_{t+1}}$
 - Freeze last occurrence of each s_i

Summary and more info

- Small quantum cohomology: "counting intersecting curves"
- ▶ LG-models $(X^{\vee}, \mathcal{W}_q)$ satisfying $\mathbb{C}[X^{\vee} \times \mathbb{C}_q^*]/\langle \partial \mathcal{W}_q \rangle \cong qH^*(X)[q^{-1}]$
- Two LG-models for homogeneous spaces:
 - Lie-theoretic model: any G/P, but abstract
 - Canonical model: correspondence, but only comin. and type-dependent
- More information?
 - More details about the quantum cohomology
 - A third LG-model: Laurent polynomial, type-independent & combinatorial, but only cominuscule & local (+sketch of proof)
 - How to define Plücker coordinates?
 - How to construct the canonical models?
- ► Related: cluster algebra structures for C[X[∨]_{can}]