Counting BPS states with discrete charges in M-theory

Thorsten Schimannek

based on 2108.0931 [TS] and work in progress w/ S. Katz, A. Klemm, E. Sharpe

String Math 2022, Warsaw

Start with smooth Calabi-Yau 3-fold
$$T_{\rm Smooth}$$
 Calabi-Yau 3-fold $T_{\rm Smooth}$ Calabi-Yau 3-fold $T_{\rm Smooth}$

Degeneration develops **nodal singularities** that can not be crepantly resolved algebraically. M-theory develops \mathbb{Z}_N gauge symmetry

Example: Jacobian of smooth genus one fibration

Start with smooth Calabi-Yau 3-fold $T_{\rm Smooth}$ Calabi-Yau 3-fold $T_{\rm Smooth}$

Degeneration develops nodal singularities that can not be crepantly resolved algebraically. M-theory develops \mathbb{Z}_N gauge symmetry

Example: Jacobian of smooth genus one fibration

Multiplicities of \mathbb{Z}_N charged BPS states?

Start with smooth Calabi-Yau 3-fold
$$T_{\rm Smooth}$$
 Calabi-Yau 3-fold $T_{\rm Smooth}$ Calabi-Yau 3-fold $T_{\rm Smooth}$

Degeneration develops **nodal singularities** that can not be crepantly resolved algebraically. M-theory develops \mathbb{Z}_N gauge symmetry

Example: Jacobian of smooth genus one fibration

Start with smooth Calabi-Yau 3-fold
$$T_{\rm smooth}$$
 Calabi-Yau 3-fold $T_{\rm smooth}$ Calabi-Yau 3-f

Degeneration develops nodal singularities that can not be crepantly resolved algebraically. M-theory develops \mathbb{Z}_N gauge symmetry

Example: Jacobian of smooth genus one fibration

Singularities can be stabilized by B-field

$$\rightarrow$$
 "non-commutative resolution"

$$X_{\mathrm{n.c.}} \simeq D^b(\hat{X}, \alpha)$$

Start with smooth Calabi-Yau 3-fold
$$T_{\rm Smooth}$$
 Calabi-Yau 3-fold $T_{\rm Smooth}$ Calabi-Yau 3-fold $T_{\rm Smooth}$

Degeneration develops nodal singularities that can not be crepantly resolved algebraically. M-theory develops \mathbb{Z}_N gauge symmetry

Example: Jacobian of smooth genus one fibration

$$\frac{1}{N}$$
 B-field at nodes

Singularities can be stabilized by B-field

$$\rightarrow$$
 "non-commutative resolution"

$$X_{\text{n.c.}} \simeq D^b(\hat{X}, \alpha)$$

Topological string on $X_{n.c.}$ exists and allows us to calculate \mathbb{Z}_N refined Gopakumar-Vafa invariants!

Start with smooth Calabi-Yau 3-fold
$$T_{\rm Smooth}$$
 Calabi-Yau 3-fold $T_{\rm Smooth}$ Calabi-Yau 3-fold $T_{\rm Smooth}$

Singularities can be stabilized by B-field

 \rightarrow "non-commutative resolution"

Degeneration develops nodal singularities that can not be crepantly resolved algebraically. M-theory develops \mathbb{Z}_N gauge symmetry

Example: Jacobian of smooth genus one fibration

$$X_{
m n.c.} \simeq D^b(\hat{X}, lpha)$$
 \longrightarrow Y Smooth Calabi-Yau 3-fold cplx. Kähler

deformation

Topological string on $X_{n.c.}$ exists and allows us to calculate \mathbb{Z}_N refined Gopakumar-Vafa invariants!

Start with smooth Calabi-Yau 3-fold
$$T_{\rm Smooth}$$
 Calabi-Yau 3-fold $T_{\rm Smooth}$ Calabi-Yau 3-fold $T_{\rm Smooth}$

Degeneration develops **nodal singularities** that can not be crepantly resolved algebraically. M-theory develops \mathbb{Z}_N gauge symmetry

Example: Jacobian of smooth genus one fibration

Discrete symmetries in M-theory

- •• M-theory on CY 3-fold X has $U(1)^{b_2(X)}$ gauge symmetry
- Extra \mathbb{Z}_N gauge symmetry arises from N-torsion in [Camara,Ibanez,Marchesano'11]

 Tors $H_2(X) \simeq \operatorname{Tors} H^3(X)$
- Charged particles from M2-branes wrapping torsion curves

But \mathbb{Z}_N can also arise from singularities!

Recall conifold transition

M-theory on conifold singularity ("node", ODP)

$$\{x_1^2 + x_2^2 + x_3^2 + x_4^2 = 0\} \subset \mathbb{C}^4$$

exhibits U(1) gauge symmetry

- **Blow-up** gives resolved conifold $\mathcal{O}(-1)^{\oplus 2} \to \mathbb{P}^1$, corresponds to **Coulomb branch** with U(1) preserved
- **Deformation** $x_1^2 + \ldots + x_4^2 = \epsilon$ also smooth, corresponds to **Higgs branch** where U(1) is broken

Local picture in compact CY 3-folds. Always possible globally?

Consider CY 3-fold X with nodal singularities

Resolution is $\pi: \widehat{X} \to X$ is called **crepant** if

$$K_{\hat{X}} = \pi^* K_X$$

- Existence of crepant (i.e. CY) global Kähler resolution depends on intricate global properties [Clemens'83]
- If no crepant kähler resolution (CKR) of X exists, non-Kähler resolutions \widehat{X} will exhibit [Werner'87]

Tors
$$H_2(\widehat{X}) \neq 0!$$

Conjecture: (based on F-theory) M-theory on X has discrete gauge symmetry $\operatorname{Tors} H_2(\widehat{X})$, where \widehat{X} is in general not Kähler!

Examples

- 1. Jacobian fibration J(X) of smooth genus one fibered CY 3-fold X without a section. e.g. [Braun,Morrison'14]... (beautiful interplay with arithmetic geometry and modularity!) [TS'21]
- 2. Simplest example (?): [Katz,Klemm,T.S.,Sharpe'xx] Degeneration of generic CY double cover of \mathbb{P}^3

$$X = \{w^2 = \det A_{8\times 8}(x_1, \dots, x_4)\} \subset \mathbb{P}(1, 1, 1, 1, 4)$$

Simplest (?) example: [Katz,Klemm,T.S.,Sharpe'xx]

1. Start with generic smooth CY double cover of \mathbb{P}^3

$$X_{\text{def.}} = \{ w^2 = f_8(x_1, \dots, x_4) \} \subset \mathbb{P}(1, 1, 1, 1, 4)$$

$$h^{1,1}(X_{\text{def.}}) = 1$$
, $h^{2,1}(X_{\text{def.}}) = 149$, $H_2(X_{\text{def.}}) = \mathbb{Z}$

2. Degenerate to

$$X = \{w^2 = \det A_{8\times 8}(x_1, \dots, x_4)\} \subset \mathbb{P}(1, 1, 1, 1, 4)$$

Now X has 84 nodes and no crepant Kähler resolution! [Addington'09]

3. Can construct non-Kähler crepant resolution \hat{X} with $H_2(\hat{X}) = \mathbb{Z} \oplus \mathbb{Z}_2$. [Addington'09], [Katz,Klemm,T.S.,Sharpe'xx]

Start with smooth Calabi-Yau 3-fold $T_{\rm Smooth}$ Calabi-Yau 3-fold $T_{\rm Smooth}$

Degeneration develops nodal singularities that can not be crepantly resolved algebraically. M-theory develops \mathbb{Z}_N gauge symmetry

Example: Jacobian of smooth genus one fibration

Multiplicities of \mathbb{Z}_N charged BPS states?

Five-dimensional BPS particles arise from M2 branes wrapping curves in the Calabi-Yau. The multiplicities are encoded in the (A-model) topological string partition function as Gopakumar-Vafa invariants n_{β}^g :

$$\log Z_{\text{top.}}^{X}(\omega) = \sum_{\beta \in H_2(X)} \sum_{g=0}^{\infty} \sum_{m=1}^{\infty} c(g, m, \lambda) \cdot n_{\beta}^{g} \exp\left(2\pi i m \int_{\beta} \omega\right)$$

••
$$\omega = B + iV \text{ cplx. Kähler form}$$

 \rightarrow λ topological string coupling

$$\beta \in H_2(X) \simeq U(1)^r \times \mathbb{Z}_N \text{ charge}$$

••
$$\beta \in H_2(X) \simeq U(1)^r \times \mathbb{Z}_N \text{ charge}$$
 •• $c(g, m, \lambda) = \frac{1}{m} \left[2 \sin \left(\frac{m\lambda}{2} \right) \right]^{2g-2}$

How can one resolve discrete charges?

Problem: Integral $\int_{\beta} \omega$ vanishes for $\beta \in \text{Tors } H_2$.

Solution: replace $\exp\left(2\pi i \int_{\beta} \omega\right)$ by homomorphism [Aspinwall, Morrison, Gross'95]

$$e^{-S}: H_2(X,\mathbb{Z}) = \mathbb{Z}^r \oplus \mathbb{Z}_N \to \mathbb{C}^*.$$

Can use $\omega \in H^2(X,\mathbb{C})$ and $k \in \{0,\ldots,N-1\}$ to write

$$b_{\omega,k}(\beta,1) = e^{\frac{2\pi ik}{N}} \exp\left(2\pi i \int_{\beta} \omega\right).$$

Turning on $\frac{k}{N}$ B-field should give partition function

$$\log Z_{\text{top.}}^X(\omega, k) = \sum_{\beta \in \mathbb{Z}^r} \sum_{q_{\mathbb{Z}_N} = 0}^{N-1} \sum_{g=0}^{\infty} \sum_{m=1}^{\infty} c(g, m, \lambda) \cdot n_{\beta, q_{\mathbb{Z}_N}}^g b_{\omega, k}(\beta, q_{\mathbb{Z}_N})$$

(see also [Braun, Kreuzer, Ovrut, Scheidegger'07], [Dedushenko, Witten'14] for smooth case)

But \hat{X} is not Kähler. Are we in trouble?

Start with smooth Calabi-Yau 3-fold
$$T_{\rm smooth}$$
 Calabi-Yau 3-fold $T_{\rm smooth}$ Calabi-Yau 3-f

Degeneration develops nodal singularities that can not be crepantly resolved algebraically. M-theory develops \mathbb{Z}_N gauge symmetry

Example: Jacobian of smooth genus one fibration

Singularities can be stabilized by B-field

$$\rightarrow$$
 "non-commutative resolution"

$$X_{\mathrm{n.c.}} \simeq D^b(\hat{X}, \alpha)$$

But \hat{X} is not Kähler. Are we in trouble?

Let's go back to conifold!

Conifold has non-commutative crepant resolution (NCCR) [Van der Bergh'04], [Szendrői'08]

Usual Algebraic Geometry: Correspondence between geometry and commutative ring of functions

$$\{x_1^2 + \ldots + x_4^2 = 0\} \subset \mathbb{C}^4 \quad \leftrightarrow \quad R = \mathbb{C}[x_1, \ldots, x_4] / \langle x_1^2 + \ldots + x_4^2 \rangle$$

NCCR: Non-commutative algebra that contains R as center. Can define notion of crepancy and smoothness.

NC-Conifold given by Jacobi algebra of quiver with potential!

NC-Conifold is realized at equator of str. Kähler moduli space [Szendrői'08]

Can define NC-Donaldson-Thomas/Gopakumar-Vafa invariants!

It turns out that this picture makes sense globally! [T.S.'21], [Katz,Klemm,T.S.,Sharpe'XX]

Recall
$$X = \{ w^2 = \det A_{8 \times 8}(x_1, \dots, x_4) \} \subset \mathbb{P}(1, 1, 1, 1, 4)$$

- Kuznetsov's non-commutative resolution $X_{\text{n.c.}}$ of X at hybrid point in GLSM of CICY $X_{2,2,2,2} \subset \mathbb{P}^7$ [Caldararu,Distler,Hellerman,Pantev,Sharpe'07]

 Homologically projective dual to $X_{2,2,2,2}$ [Kuznetsov'06]
- Hori/Seiberg dual to $U(1) \times SO(8)$ GLSM + theta angle [Hori'11] Locally around nodes reduces to conifold with $\frac{1}{2}$ B-field!
- Can study top. string on $X_{\text{n.c.}}$ using B-model analytic continuation

Larger class of examples from "Clifford double mirrors" [Borisov,Li'16]

(Other large source of nc-resolutions from torus fibrations [Caldararu'00], [T.S.'21])

- 1. Start with singularity
- 2. Perform small resolution In general non-Kähler!
- 3. Turn on **B-field**
- 4. Shrink 2-cycle back to point

- 1. Start with singularity
- 2. Perform small resolution In general non-Kähler!
- 3. Turn on **B-field**
- 4. Shrink 2-cycle back to point

- 1. Start with singularity
- 2. Perform small resolution In general non-Kähler!
- 3. Turn on B-field
- 4. Shrink 2-cycle back to point

- 1. Start with singularity
- 2. Perform small resolution In general non-Kähler!
- 3. Turn on B-field
- 4. Shrink 2-cycle back to point

It turns out that this picture makes sense globally! [T.S.'21], [Katz,Klemm,T.S.,Sharpe'XX]

Recall
$$X = \{ w^2 = \det A_{8 \times 8}(x_1, \dots, x_4) \} \subset \mathbb{P}(1, 1, 1, 1, 4)$$

- Kuznetsov's non-commutative resolution $X_{\text{n.c.}}$ of X at hybrid point in GLSM of CICY $X_{2,2,2,2} \subset \mathbb{P}^7$ [Caldararu,Distler,Hellerman,Pantev,Sharpe'07]

 Homologically projective dual to $X_{2,2,2,2}$ [Kuznetsov'06]
- Hori/Seiberg dual to $U(1) \times SO(8)$ GLSM + theta angle [Hori'11] Locally around nodes reduces to conifold with $\frac{1}{2}$ B-field!
- Can study top. string on $X_{\text{n.c.}}$ using B-model analytic continuation

Larger class of examples from "Clifford double mirrors" [Borisov,Li'16]

(Other large source of nc-resolutions from torus fibrations [Caldararu'00], [T.S.'21])

Start with smooth Calabi-Yau 3-fold
$$T_{\rm Smooth}$$
 Calabi-Yau 3-fold $T_{\rm Smooth}$ Calabi-Yau 3-fold $T_{\rm Smooth}$

Singularities can be stabilized by B-field

 \rightarrow "non-commutative resolution"

Degeneration develops nodal singularities that can not be crepantly resolved algebraically. M-theory develops \mathbb{Z}_N gauge symmetry

Example: Jacobian of smooth genus one fibration

$$X_{
m n.c.} \simeq D^b(\hat{X}, lpha)$$
 \longrightarrow Y Smooth Calabi-Yau 3-fold cplx. Kähler

deformation

Topological string on $X_{n.c.}$ exists and allows us to calculate \mathbb{Z}_N refined Gopakumar-Vafa invariants!

U(1) GV-invariants for $X = \{w^2 = f_8(x_1, \dots, x_4)\} \subset \mathbb{P}(1, 1, 1, 1, 4)$

n_g^β	$\beta = 1$	2	3	4
g=0	29504	128834912	1423720546880	23193056024793312
1	0	41312	21464350592	1805292092705856
2	0	864	-16551744	12499667277744
3	0	6	-177024	-174859503824
4	0	0	0	396215800
5	0	0	0	301450
6	0	0	0	4152
7	0	0	0	24

$$U(1) \times \mathbb{Z}_2$$
 GV-invariants for $X = \{w^2 = \det A_{8 \times 8}(x_1, \dots, x_4)\} \subset \mathbb{P}(1, 1, 1, 1, 4)$

Extracted from $Z_{top.}(X_{def.}) + Z_{top.}(X_{n.c.})!$

$n_g^{eta,0}$	$\beta = 1$	2	3	4	$n_g^{eta,1}$	$\beta = 1$	2	3	4
g=0	14752	64415616	711860273440	11596528004344320	g=0	14752	64419296	711860273440	11596528020448992
1	0	20160	10732175296	902646044328864	1	0	21152	10732175296	902646048376992
2	0	504	-8275872	6249833130944	2	0	360	-8275872	6249834146800
3	0	0	-88512	-87429839184	3	0	6	-88512	-87429664640
4	0	0	0	198065872	4	0	0	0	198149928
5	0	0	0	157306	5	0	0	0	144144
6	0	0	0	1632	6	0	0	0	2520
7	0	0	0	24	7	0	0	0	0

Can be interpreted as enumerative invariants of non-Kähler \hat{X} !

[Katz,Klemm,T.S.,Sharpe'XX]

Summary

- Can calculate \mathbb{Z}_N refined GV-invariants from $Z_{\text{top.}}$ on singular Calabi-Yau 3-folds and their non-commutative crepant resolutions [T.S.'21], [Katz,Klemm,T.S.,Sharpe'XX]
- For \mathbb{Z}_5 this gives integral invariants from irrational partition functions! [T.S.21]
- Beautiful modular structure in case of torus fibrations [T.S.'21] $Z_{\text{top.}} \text{ transform as vector valued Jacobi forms under Atkin-Lehner involutions}$ (see also [Knapp,Scheidegger,T.S.'21])
- New formula for constant map contributions to $Z_{\text{top.}}$ on nc-resolutions $More\ boundary\ conditions\ to\ solve\ top.\ string!$ [Katz,Klemm,T.S.,Sharpe'XX]

