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Overview

I want to discuss some joint work with Justin Hilburn, with an
emphasis on formal patterns resembling parts of QFT.

These formal aspects have been influenced by many, many people
(David Ben-Zvi, Sasha Braverman, Kevin Costello, Tudor Dimofte,
Davide Gaiotto, Misha Finkelberg, and Philsang Yoo, for a start),
and we do not claim any originality for it. I just wanted to take this
opportunity today to do a little storytelling, recognizing that I
picked up the ideas through osmosis while others did serious
thinking around it.



Disclaimer

Speaking of osmosis: I am a geometric representation theorist, and
do not have real training in math physics. I’m a tourist here with
an outsider’s motivations, and I may not be able to answer some
simple questions that you ask!



Morita theory: motivation

In the physics literature, there is a remarkable role played by
dualities of QFTs, many of which can ultimately be derived from a
small list of string theory conjectures. Roughly speaking, one may
find two QFTs Z1 and Z2, perhaps both with concrete
Lagrangian/path-integral formulations, and one is told that the
theories should be fundamentally equivalent in a way that does not
at all respect their Lagrangian presentations. This means that
fields in the two theories take different forms (e.g., one may be a
gauge theory, the other not), but some fundamental physical
features match.



Morita theory: motivation

I wish to take the following as an ansatz.

Many theories are defined by a (factorization) algebra A of local
operators. Others are not too far from such a case: e.g., they may
be ”non-affine” generalizations of a family of such examples.

In this case, equivalence/duality of QFTs ZA and ZB should
amount to a Morita equivalence between A and B.

We will discuss the 1d (2d?) case as a warm up, and then
specialize to the 2d (3d?) algebraic/holomorphic setting.



Morita theory: background

Suppose A and B are associative algebras. A Morita equivalence
between them is an equivalence A–mod » B–mod.

Technical comment: my categories are all derived, which will
matter at certain points. So this is often called derived Morita
equivalence.

Such a categorical relationship between A and B leads to concrete
relationships between A and B . Famously: HH‚pAq » HH‚pBq as
chain complexes with S1-actions.

More generally, I think of Morita theory as considering the category
A–mod rather than the algebra A itself. This philosophy is also
sometimes called non-commutative geometry, and surely it goes by
other names as well.



Morita theory: TFT

One can reinterpret the above as follows. First, an associative
algebra A determines a (dualizable) category A–mod.

More generally, any (dualizable) DG category C essentially
determines a 2d (extended) TFT ZC. Here essentially properly
means r0, 1s-extended, i.e., defined on 0 and 1-dimensional
manifolds.



Morita theory from the TFT POV
Explicitly, the theory ZC assigns:

§ The category C to the (framed) point.

§ The (chain complex of) vector space(s) HH‚pCq to the circle
S1.

Remark

In the case C “ A–mod (breaking Morita invariance!), an n-tuple
of points tx1, . . . , xnu Ď S1 induces a natural map
Abn Ñ HH‚pAq “ HH‚pA–modq, which one can think of as
analogous to correlators between local operators (if we pretend
HH‚pAq “ C, or at least suppose we are given a “path integral”
map HH‚pAq Ñ C).

Remark

The theory ZC extends to framed 2-manifolds when C is smooth
and proper. In this case, the theory attaches dimpHH‚pCqq to T2.



An aside about dimensions

Question: we think of A as defining quantum mechanics, not a 2d
theory. What is happening?

Properly, in many circumstances, a physicist’s n-dimensional QFT
comes in a pair: an n-dimensional theory of states, and an
pn ` 1q-dimensional theory of observables. The state theory is
naturally a boundary condition for the theory of observables.

In the above example, we think of the “Hilbert space” V as the
theory of states, the 2d theory ZA as the theory of observables,
and the action of A on V as encoded by realizing V P A–mod.

In this talk, I’m more interested in theories of observables, so
sometimes the dimensions may seem off.



Chiral algebras

The theory of chiral (alias: factorization) algebras was developed
by Beilinson-Drinfeld. I want to give a super brief recap about the
outcomes of their theory.

The setting is a smooth algebraic curve X over a field k (say,
k “ C) of characteristic 0. In this setting, one may speak of chiral
algebras A on X . Vertex algebras are roughly equivalent to chiral
algebras defined on every curve, and most chiral algebras in nature
arise by this procedure.

We will discuss some examples later in the talk, but not yet.



Chiral algebras: local structure

For a chiral algebra A on X and a fixed point x P X , there is a
category A–modx of chiral A-modules supported at x .

Typically, A–modx admits a concrete description involving Laurent
series kpptqq, which geometrically corresponds to the punctured

disc
o
Dx . For example, gpptqq–mod is the category of modules for

the (central charge 0) Kac-Moody chiral algebra.

Example

There is always a canonical vacuum chiral module Ax P A–modx .
It is more analogous to A considered as an A-bimodule than to A
considered as an A-module.



Chiral algebras: global structure

Now suppose that X is projective.

Then there is a vector space HchpX ,Aq of chiral
homology/conformal blocks for the theory. For any n-tuple of
points tx1, . . . , xnu P X , there is a map:

Ax1 b . . . b Axn Ñ HchpX ,Aq

that again roughly encodes correlators.

Typically, HchpX ,Aq is computed using geometry of the projective
curve X .



Chiral algebras: global structure

More generally, there is a chiral homology functor:

A–modx1 b . . . b A–modxn Ñ Vect

M1, . . . ,Mn ÞÑ HchpX ,A;M1, . . . ,Mnq

and natural maps:

M1 b . . . b Mn Ñ HchpX ,A;M1, . . . ,Mnq.

Inserting the vacuum module at a point does not change the chiral
homology.



Algebraic field theories

Thesis: the Morita theory of chiral algebras is governed by 3d
algebraic field theories.



Algebraic field theories

Recall that 3d TFTs assign numbers to closed 3-manifolds, vector
spaces to 2-manifolds, and categories to 1-manifolds.

We have the following (outline of a) definition.
An (algebraic, [1,2]-extended) 3d field theory Z on a smooth,
proper algebraic curve X is ... some data.



Algebraic field theories

First, for x P X , we have a DG category Z p
o
Dxq P DGCat – roughly,

this is the category attached to the “1-manifold/circle”
o
Dx .

Z p
o
Dxq is usually called the category of line operators for the

theory Z .



Algebraic field theories

The “cobordism:”

defines a vacuum (or unit) object:

1x P Z p
o
Dxq.

Remark

Something funny: in the algebraic setting, cobordisms are
inherently asymmetric. For me, this is just an experimental fact.



Algebraic field theories

The “cobordism”:

defines a chiral homology functor:

Hch,xp´q : Z p
o
Dxq Ñ Z pHq “ Vect.



Algebraic field theories

The vector space Hch,xp1xq P Vect is independent of the choice of
point x , and should be thought of as the vector space the theory
assigns to the “2-manifold” X .



Algebraic field theories

There are other (more technical) axioms about varying points and
vacuum insertion, but this is the top line stuff.

Fantasy

What is a r0, 2s-extended algebraic field theory?



Algebraic field theories

Main example: given a chiral algebra A on X , Beilinson-Drinfeld
defined a 3d theory ZA.

Here ZAp
o
Dxq is the category of A-modules supported at x . The

vacuum representation of A is the unit object, and chiral homology
is given as defined by Beilinson-Drinfeld.

One can take Morita theory for chiral algebras to mean
equivalences of theories attached to chiral algebras. Justin Hilburn
and I proved something non-trivial of this shape (except one side is
a little non-affine), which I want to explain now.



Where do Morita equivalences of chiral algebras come
from?

Answer: there are many precise predictions coming from the 3d
mirror symmetry program.



Attributions
The circle of ideas I’m going to discuss was developed by many
people. I apologize for any incompleteness and inaccuracies here.
On the mathematical physics side, we are discussing 3d mirror
symmetry (and implicitly, its relation with 4d S-duality). The
former subject was initiated by Intriligator–Seiberg and further
developed by Hanany–Witten and many others. The connections
with S-duality were first considered by Gaiotto–Witten. The sharp
mathematical conjectures were first considered by Hilburn-Yoo
(maybe jointly with Dimofte-Gaitto) and later
Braverman–Finkelberg.

Important parts of the story have cousins in harmonic analysis.
This body of conjectures originated from work of
Sakellaridis–Venkatesh that provides a unified perspective on
period expressions for L-functions.

Forthcoming work of Ben-Zvi–Sakellaridis–Venkatesh joins these
two perspectives and connects with the geometric Langlands
program.



Lagrangian 3d N “ 4 theories

For a stack Y , physicists say that the (non-algebraic!) 3d σ-model
ZY with target T ˚Y has N “ 4 supersymmetry. This allows us to
define two twists of ZY , the A and B-twists. In practice, these 3d
theories ZY ,A and ZY ,B are algebraic, and I will treat them as such.



Lagrangian 3d N “ 4 theories

The basic properties of these twists are:

ZY ,Ap
o
Dxq “ DpMapsp

o
Dx ,Y qq

ZY ,Bp
o
Dxq “ IndCohpMapsp

o
Dx ,dR ,Y qq.

Here D denotes the category of D-modules on this (infinite
dimensional!) space.

Remark

For Y affine, DpMapsp
o
Dx ,Y q is the category of modules for a

CDO (alias: curved βγ-system) attached to Y , while

IndCohpMapsp
o
Dx ,dR ,Y q is modules for a constant commutative

chiral algebra with fiber FunpY q.



Mirror symmetry

For a 3d N “ 4 theory Z , there is a abstract mirror dual theory
Z ‹. This should be the same 3d theory but with the
supersymmetries realized in a conjugate way. By construction,
ZA “ Z ‹

B and ZB “ Z ‹
A.

Mirror symmetry (in 3-dimensions) refers to mirror dual pairs
pY1,Y2q with ZY1 “ Z ‹

Y2
. Given the previous slide, any such pair

pY1,Y2q yield interesting mathematical conjectures.



Mirror symmetry
There are many (expected) examples of mirror dual pairs, and I do
not intend to survey them here.

But let me give one example that is important to me: Y1 “ A1 and
Y2 “ A1{Gm. The theory ZY1 is that of a pure hypermultiplet,
while the theory ZY2 is that of a Up1q-gauged hypermultiplet.

Here the prediction ZY1,Ap
o
Dxq » ZY2,Bp

o
Dxq amounts to an

equivalence:

IndCohpMapsp
o
DdR ,A1{Gmqq » DpMapsp

o
D,A1qq.

This is my theorem with Hilburn. (Technically, this is just the
category of line operators. We worked out but have not written up
the global aspects yet.)

As far as I know, this is the first honestly derived Morita theorem
for chiral algebras (or near enough), and the first non-classical
example.



Geometric side

The me in the past who wrote this talk does not think there is
time to say much more, but just in case, let’s discuss the geometry
of both sides a little more. Below I’ll let O “ krrtss and let
K “ kpptqq.
For Y an affine scheme, I let L`Y “ MapspDx ,Y q (resp.

LY “ Mapsp
o
Dx ,Y q) denote the scheme (resp. ind-scheme) such

that:

tSpecpAq Ñ Y pOqu “ tSpecpArrtssq Ñ Y u

tSpecpAq Ñ Y pK qu “ tSpecpApptqqq Ñ Y u.



Geometric side

There are theories of D-modules on such spaces.

For example, I can think of K “ LA1 as an (ind-pro) affine space
with coordinates ai given by Laurent coefficients. Then a
quasi-coherent sheaf on K is a vector space V with operators
ai : V Ñ V (i P Z) such that for any vector v P V , aiv “ 0 for
i ! 0. A D-module on K also has operators Bai such that for every
vector v , Bai v “ 0 for i " 0 and such that rBai , aj s “ δij ¨ id.

Such data are equivalent to modules over the Weyl (or βγ, or
CDO on A1) VOA.



Geometric side

The above definition has a more categorical expression:

DpK q “ colimn Dpt´nOq “ colimn colimm Dpt´nO{tmOq.

This formula means that DpK q is built out of categories of
D-modules on finite-dimensional affine spaces t´nO{tmO via
D-module functoriality.

This definition is well-behaved on derived categories, and we take
it as our definition of DpLA1q.



Geometric side

We similarly have DpLGmq, which is a monoidal category under
convolution. It acts canonically on DpK q.

From the perspective of geometric representation theory, our
problem is to understand the spectral decomposition of DpK q as a
DpLGmq-module category.



Spectral side

For this problem to make sense, we recall local geometric class
field theory:

Theorem (Beilinson-Drinfeld)

There is a canonical equivalence DpLGmq » QCohpLocSysGm
q as

symmetric monoidal categories.

Here LocSysGm
is the moduli of rank 1 de Rham local systems

pL,∇q on
o
D :“ SpecpK q. By definition, we take LGm acting on

LA1dt via the homomorphism d log : LGm Ñ LA1dt and form the
(stack) quotient LocSysGm

.



Spectral side

Now define Y as the moduli of data pL,∇, sq with pL,∇q a rank 1
local system on the punctured disc and s P L with ∇psq “ 0. I.e.,

Y “ Mapsp
o
DdR ,A1{Gmq.

At a technical level, the structure of Y is given by:

Proposition

Y is a quotient of a classical ind-affine scheme by an action of
LGm{p1 ` tOq.

As a consequence of this result, we can make sense of IndCohpYq.

Remark

I found understanding the geometry of Y to be the most
challenging part of our work.



Statement of the main result, redux

Theorem (Hilburn-R.)

There is a canonical equivalence of DG categories:

IndCohpYq » DpLA1q

compatible with local geometric class field theory.

Remark

Physically, the compatibility with class field theory is expressed as
compatibility with the structure of the 3d theory as boundary
conditions for S-dual abelian Yang-Mills in 4d .

Remark

If pL,∇q is a non-trivial local system with connection, the fiber of
Y Ñ LocSysGm

over it is just a point. This is similar to phenomena
from Tate’s thesis.



Thanks!


