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δενδροσκοπια= analyzing the BPS spectrum in terms
of attractor flow trees
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Introduction

In type IIA string theory compactified on a Calabi-Yau threefold X ,
the BPS spectrum consists of bound states of D6-D4-D2-D0
branes, described mathematically by objects E in the derived
category of coherent sheaves C = DbCoh(X ) [Douglas’01]

The BPS index or Donaldson-Thomas invariant Ωz(γ) counts
stable states with charge γ = ch E ∈ Heven(X ,Q) saturating the
BPS bound M(γ) ≥ |Z (γ)|, where Z ∈ Hom(Γ,C) depends on the
complexified Kähler moduli z ∈M.
Ωz(γ) is locally constant onM, but can jump across real
codimension one walls of marginal stabilityW(γ1, γ2) ⊂M, where
the phases of the central charges Z (γ1) and Z (γ2) with
γ = m1γ1 + m2γ2 become aligned [Kontsevich Soibelman’08, Joyce Song’08]

Physically, multi-centered black hole solutions (dis)appear across
the wall [Denef Moore ’07, ..., Manschot BP Sen ’11].
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BPS spectrum on local surfaces

For a non-compact CY3 of the form X = KS where S is a complex
Fano surface, there is an injection ι∗ : Db Coh(S)→ Db

c (X ) lifting
an object E with Chern character γ = [r ,d , ch2] to a bound state
of r D4-branes wrapped on S, c D2-branes and ch2 D0-branes.

At large volume, the central charge is quadratic in complexified
Kähler moduli za = ba + ita,

Z (γ) ∼ −
∫

S
e−zaHa ch E = −r zaQabzb + zada − ch2

Ωz(γ) reduces to the Gieseker index Ω∞(γ), given (up to sign) by
the Euler number of the moduli space of Gieseker semi-stable
sheaves on S with Chern character γ.
At finite volume, Z receives worldsheet instanton corrections
computable by mirror symmetry. Can we determine Ωz(γ)
anywhere, and understand what are BPS states really "made of" ?
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Kähler moduli space of KP2

The Kähler moduli space of KP2 is the modular curve
X1(3) = H/Γ1(3) parametrizing elliptic curves with level structure.
It admits two cusps LV ,C and one elliptic point o of order 3.

The universal cover is parametrized by τ ∈ H:
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Zτ (γ) = −rTD(τ) + dT (τ)− ch2

T =
∫
` λ

TD =
∫
`D
λ

λ holomorphic one-form with loga-
rithmic singularities on Eτ

B. Pioline (LPTHE, Paris) BPS Dendroscopy 14/07/2022 8 / 35



Kähler moduli space of KP2

The Kähler moduli space of KP2 is the modular curve
X1(3) = H/Γ1(3) parametrizing elliptic curves with level structure.
It admits two cusps LV ,C and one elliptic point o of order 3.
The universal cover is parametrized by τ ∈ H:

LV

C(1)C

o

Fo

g Fo g-1Fo

0
1

6

1

5

2

9

1

4

1

3

2

5

3

7

1

2

4

7

3

5

2

3

3

4

7

9

4

5

5

6
1

4

9

5

9

0

1

2 3

Zτ (γ) = −rTD(τ) + dT (τ)− ch2

T =
∫
` λ

TD =
∫
`D
λ

λ holomorphic one-form with loga-
rithmic singularities on Eτ

B. Pioline (LPTHE, Paris) BPS Dendroscopy 14/07/2022 8 / 35



Central charge as Eichler integral

Since ∂τλ is holomorphic, its periods are proportional to (1, τ).
Integrating on a path from o to τ , one finds the Eichler-type
integral (

T
TD

)
=

(
1/2
1/3

)
+

∫ τ

τo

(
1
u

)
C(u) du

where C(τ) = η(τ)9

η(3τ)3 is a weight 3 modular form for Γ1(3).

This provides an computationally efficient analytic continuation of
Zτ throughout H, and gives access to monodromies:

τ 7→ aτ + b
cτ + d

 1
T
TD

 7→
 1 0 0

m d c
mD b a

 ·
 1

T
TD


where (m,mD) are period integrals of C from τo to aτo−b

cτo−d .
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Central charge as Eichler integral

At large volume, using C = 1− 9q + . . . one finds

T = τ +O(q), TD =
1
2
τ2 +

1
8

+O(q)

For τ2 large enough, one can use the ˜GL(2,R)+ action on space
of Bridgeland stability conditions to absorb the O(q) corrections:

Z LV
(s,t)(γ) = − r

2
(s + it)2 + d(s + it)− ch2 ,

LV

CC

o'

s =
ImTD

ImT
, µ =

d
r

1
2

(s2 + t2) = − Im(T T̄D)

ImT

A = {E d→ F , µ(E) < s, µ(F ) ≥ s}

[Bayer Macri’11]
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Quiver for KP2

Near the orbifold point τo = −1
2 + i

2
√

3
, the BPS spectrum is

governed by a quiver with potential:

n1

n2

n3

Xi Yj

Zk

W =
∑
εijkXiYjZk

E1 = O γ1 = [1,0,0]

E2 = Ω(1)[1], γ2 = [−2,1, 1
2 ]

E3 = O(−1)[2] γ3 = [1,−1, 1
2 ]

r = 2n2 − n1 − n3
d = n3 − n2
ch2 = −1

2(n2 + n3)

The BPS index Ωτ (γ) coincides with the (signed) Euler number
Ωζ(γ) of the moduli space of King semi-stable representations of
dimension γ = (n1,n2,n3), with FI-parameters θi = ImZτ (γi).
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Attractor conjecture for KP2

In the chamber θ1 > 0, θ3 < 0, the arrows Zk vanish in any stable
representation, and (Q,W ) reduces to the Beilinson quiver
describing normalized torsion-free sheaves on P2:

n1 n2 n3
Xi Yj

εijkX iY j = 0

Douglas Fiol Romelsberger’00

In [Beaujard BP Manschot’20], we showed that the attractor index
Ω?(γ) := Ω〈γ,−〉(γ) vanishes except for γ = γi or γ ∝ γ1 + γ2 + γ3.
Moreover, the anti-attractor index Ωx (γ) := Ω−〈γ,−〉(γ) coincide
with the Gieseker index Ω∞(γ), provided −r < d ≤ 0.
A similar conjecture for Ω?(γ) holds for any toric CY3, giving in
principle access to DT invariants Ωζ(γ) for any ζ ∈ RQ0 [Mozgovoy

BP’20; Descombes’21]
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The Attractor Flow Tree formula for quivers

The Attractor Flow Tree Formula expresses the BPS index Ωθ(γ)
for any (generic) θ ∈ RQ0 in terms of attractor indices by summing
over all possible flow trees: schematically,

Ωθ(γ) ∼
∑

γ=γ1+···+γn

( ∑
T∈Tθ({γi})

∏
v∈VT

〈γL(v), γR(v)〉
) n∏

i=1

Ω?(γi)

Denef ’00; Denef Greene Raugas ’01; Denef Moore’07; Manschot ’10, Alexandrov BP’18

Here, a flow tree T is a binary rooted tree, with edges decorated
with charges γe, such that γv = γL(v) + γR(v) at each vertex, with
charges γi assigned to the leaves and γ to the root.
Each edge is embedded in RQ0 along θv = θp(v) + λ〈γe,−〉, λ ≥ 0,
such that the root vertex maps to θ, and (θv , γL(v)) = (θv , γR(v))
= 0 at each vertex.
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Split attractor flows

The physical picture is that typical multi-centered solutions in
N = 2 supergravity have a nested structure

5

γ1

γ

γ

γ4

γ
3

2

The linear flow in θ originates from gradient flow for spherically
symmetric black holes [Ferrara Kallosh Strominger’95]

r2 dz i

dr
= −g i j̄ ∂̄j |Z (γ)|2

At each level v , the average distance between the clusters of
charge γL(v) and γR(v) is fixed, but the orientation in S2 gives
|〈γL(v), γR(v)〉| degrees of freedom. In addition, each center of
charge γi carries internal degrees of freedom counted by Ω?(γi).
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Remarks

In order to enforce Bose-Fermi statistics whenever two charges
coincide, one should replace Ωθ(γ) by the rational index
Ω̄θ(γ) =

∑
d |γ

1
d2 Ωθ( γd ) and insert a Boltzmann symmetry factor.

[Manschot BP Sen’11]

When the charges γi are not linearly independent, some splittings
can involve higher valency vertices. One can treat them using the
full KS wall-crossing formula, or perturb θ such that only binary
trees remain.
The attractor flow tree formula is consistent with wall-crossing: the
index jumps when z crosses the wallW(γL(v0), γR(v0)) associated
to the primary splitting for one of the trees.

B. Pioline (LPTHE, Paris) BPS Dendroscopy 14/07/2022 16 / 35



Remarks

In order to enforce Bose-Fermi statistics whenever two charges
coincide, one should replace Ωθ(γ) by the rational index
Ω̄θ(γ) =

∑
d |γ

1
d2 Ωθ( γd ) and insert a Boltzmann symmetry factor.

[Manschot BP Sen’11]

When the charges γi are not linearly independent, some splittings
can involve higher valency vertices. One can treat them using the
full KS wall-crossing formula, or perturb θ such that only binary
trees remain.

The attractor flow tree formula is consistent with wall-crossing: the
index jumps when z crosses the wallW(γL(v0), γR(v0)) associated
to the primary splitting for one of the trees.

B. Pioline (LPTHE, Paris) BPS Dendroscopy 14/07/2022 16 / 35



Remarks

In order to enforce Bose-Fermi statistics whenever two charges
coincide, one should replace Ωθ(γ) by the rational index
Ω̄θ(γ) =

∑
d |γ

1
d2 Ωθ( γd ) and insert a Boltzmann symmetry factor.

[Manschot BP Sen’11]

When the charges γi are not linearly independent, some splittings
can involve higher valency vertices. One can treat them using the
full KS wall-crossing formula, or perturb θ such that only binary
trees remain.
The attractor flow tree formula is consistent with wall-crossing: the
index jumps when z crosses the wallW(γL(v0), γR(v0)) associated
to the primary splitting for one of the trees.
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Remarks

There are additional ‘fake walls’ where the topology of the trees
jump but the total index is constant, thanks to the identity

γ1 γ2 γ3 γ2 γ3 γ1 γ3 γ1 γ2

〈γ1, γ2〉 〈γ1 + γ2, γ3〉+ cyc. = 0

The formula can be refined by replacing

〈γL, γR〉 → y〈γL,γR〉−y−〈γL,γR〉

y−1/y

Ω̄θ(γ) → Ω̄θ(γ, y) =
∑
d |γ

y−1/y
d(yd−y−d )

Ωθ( γd , y
d )

Physically, y is a fugacity conjugate to angular momentum in R3.
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Flow tree formula from scattering diagrams

For any quiver with potential (Q,W ), the scattering diagram D is
the set of real codimension-one rays {R(γ), γ ∈ ZQ0} defined by
[Bridgeland’16]

R(γ) = {ζ ∈ RQ0 : (ζ, γ) = 0,Ωζ(kγ) 6= 0 for some k ≥ 1}

Each point along R(γ) is endowed with an automorphism of the
quantum torus algebra, (assume γ primitive)

U(γ) = exp(
∞∑

m=1

Ω̄ζ(kγ,y)

y−1−y Xkγ) , XγXγ′ = (−y)〈γ,γ
′〉Xγ+γ′

γ1

γ1

γ2

γ2

γ1 + γ2 • The WCF ensures that the diagram is consistent,∏
γi
U(γi)

±1 = 1 around any codimension 2 intersec-
tion. The Attractor Flow Tree Formula determines out-
going rays from incoming rays at each vertex. [Argüz

Bousseau ’20].
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Orbifold scattering diagram
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A 2D slice of the orbifold scattering diagram

γ1

γ2

γ3

γ1+γ2

γ1+2γ2

2γ1+γ2

γ2+γ3

γ2+2γ3

2γ2+γ3

γ3+γ1
γ3+2γ12γ3+γ1
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γ1

γ2

γ3

γ1+γ2

γ1+2γ2

2γ1+γ2

γ2+γ3

γ2+2γ3

2γ2+γ3

γ3+γ1
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γ1 + 2 γ2 + γ3
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Flow trees from scattering diagrams

More generally, for any ψ ∈ R/2πZ define scattering rays as
codimension-one loci in the space of Bridgeland stability
conditions

Rψ(γ) = {Z : Re(e−iψZ (γ)) = 0, Im(e−iψZ (γ)) > 0,Ωζ(kγ) 6= 0}

For a non-compact CY3, Z (γ) is holomorphic in Kähler moduli,
thus arg Z (γ) is constant along the gradient flow of |Z (γ)|.
Choosing ψ such that z ∈ Rψ(γ), edges of attractor flow trees lie
inside Rψ(γe), while vertices lie in Rψ(γL(v)) ∩Rψ(γR(v)).
Besides, since Z (γ) is holomorphic, initial rays must originate from
attractor points on the boundary.
Fflow trees are subsets of scattering diagrams, determining
sequences of scatterings which produce an outgoing ray Rψ(γ)
passing through the desired point z.
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Large volume scattering diagram

For the large volume stability conditions Z LV
(s,t), [Bousseau’19]

constructed the scattering diagram Dψ in (s, t) upper half-plane for
ψ = 0. For ψ 6= 0, just map (s, t) 7→ (s − t tanψ, t/ cosψ).

The rays R(γ) are branches of hyperbola asymptoting to
t = ±(s − d

r ) for r 6= 0, or vertical lines when r = 0. Walls of
marginal stabilityW(γ, γ′) are half-circles centered on real axis.

-� -� -� -� � �

�

�

�

�

�

�

Think of R(γ) as the worldline of a fictitious particle of charge r ,
mass m2 = 1

2d2 − r ch2 moving in a constant electric field !
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Large volume scattering diagram

Initial rays correspond to O(m) and O(m)[1], ie (anti)D4-branes
with m units of flux, emanating from (s, t) = (m,0) on the
boundary where the central charge vanishes.

�(-�) �(-�) �(�) �(�) �(�)

-� -� � �
�

���

���

���

�

The first scatterings occur for t ≥ 1
2 , after each constituent has

moved by |∆s| ≥ 1
2 . Causality and monotonicity of the ‘electric

potential’ ϕ(γ) = d − sr along the flow, allow to bound the number
and charges of constituents.
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Flow trees for γ = [0,4,1)

-3 O(-2) 2 O(-1) O(0)-O(-3)

-O(-1) 2 O(0)

{{−3O(−2),2O(−1)},O}:
3O(−2)→ 2O(−1)⊕O → E
K3(2,3)K12(1,1)→ −156

{−O(−3), {−O(−1),2O}}:
O(−3)⊕O(−1)→ 2O → E
K3(1,2)K12(1,1)→ −36

Total: Ω∞(γ) = −192 = GV (0)
4
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Flow trees for γ = [1,0,−3)

-O(-5) O(-4) O(-1)

-O(-4)

O(-3)

-O(-3)

2 O(-2)

-O(-4)

2 O(-2)

{{−O(−5),O(−4)},O(−1)}
O(−5)→ O(−4)⊕O(−1)→ E
K3(1,1)2 → 9
{{−O(−4),O(−3)},
{−O(−3),2O(−2)}}
O(−4)⊕O(−3)→
O(−3)⊕ 2O(−2)→ E
K3(1,1)2K3(1,2)→ 27
{−O(−4),2O(−2)}
O(−4)→ 2O(−2)→ E
K6(1,2)→ 15

Total: Ω∞(γ) = 51 = χ(Hilb4P2)
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Exact scattering diagram

The full scattering diagram should interpolate between DLV
ψ

around τ = i∞ and Do
ψ around τ = τo, and be invariant under the

action of Γ1(3).

Under τ 7→ τ
3nτ+1 with n ∈ Z, O 7→ O[n]. Hence we have an doubly

infinite family of initial rays associated to O(m)[n].

��

���

�

�[-�]
�[-�]

�[�] �[�]

�[�]
�[�]

For | tanψ| < 1
2V where V = ImT (0) = 27

4π2 ImLi2(e2πi/3) ' 0.463
only the rays associated to O(m)[0] and O(m)[1] escape to i∞,
and merge onto rays in the large volume scattering diagram DLV

ψ .
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Exact scattering diagram - ψ = 0
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Exact scattering diagram

In addition, there must be an infinite family of initial rays coming
from τ = p

q with q 6= 0 mod 3, corresponding to Γ1(3)-images of
O(0).

This includes initial rays emitted at τ = n − 1
2 , associated to

Ω(n + 1); for ψ ∼ π
2 , these merge onto initial rays of the orbifold

scattering diagram.
We conjecture that the only initial rays are the Γ1(3) images of the
structure sheaf O, each of them carrying Ω(kγ) = 1 for k = 1, 0
otherwise.
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Exact scattering diagram - ψ = ±π
2 mod 2π

For ψ = ±π
2 , the diagram DΠ

ψ simplifies dramatically, since the loci
ImZτ (γ) = 0 are lines of constant s := ImTD

ImT = d
r .

Hence, there is no wall-crossing between τo and τ = i∞ when
−1 ≤ d

r ≤ 0, explaining why the Gieseker index Ω∞(γ) agrees
with the index Ωc(γ) in the anti-attractor chamber.
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Exact scattering diagram, varying ψ

γ = [0,1,1) = chOC :

γ = [1,0,1) = chO:
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Conclusion - outlook

The scattering diagram is the proper mathematical framework for
the attractor flow tree formula in the case of local CY3. This is
because Z (γ) is holomorphic onMK , so the gradient flow
preserves the phase of Z (γ). Moreover, initial rays can only start
from the boundary.

This provides an effective way of computing (unframed) BPS
invariants in any chamber, and a natural decomposition into
elementary constituents. Mathematically, different trees should
correspond to different strata inMZ (γ).
It would be interesting to extend this description to other toric CY3,
such as local del Pezzo surfaces, and to framed BPS indices.
For a compact CY3, arg Z (γ) is no longer constant along the flow
and there can be attractor points with Ω?(γ) 6= 0 at finite distance
in Kähler moduli space...
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Thanks for your attention !
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