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devdpookomio= analyzing the BPS spectrum in terms
of attractor flow trees

Attractor flow trees on Kge, v = [1,0, —3), M = HilbyP?
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Introduction

@ In type IIA string theory compactified on a Calabi-Yau threefold X,
the BPS spectrum consists of bound states of D6-D4-D2-D0
branes, described mathematically by objects E in the derived
category of coherent sheaves C = DbCoh(X ) [Douglas'01]
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the BPS spectrum consists of bound states of D6-D4-D2-D0
branes, described mathematically by objects E in the derived
category of coherent sheaves C = DbCoh(X ) [Douglas'01]

@ The BPS index or Donaldson-Thomas invariant Q,() counts
stable states with charge v = ch E € H.yen(X, Q) saturating the
BPS bound M(v) > |Z(v)|, where Z € Hom(I', C) depends on the
complexified Kahler moduli z € M.

B. Pioline (LPTHE, Paris) BPS Dendroscopy 14/07/2022 4/35



Introduction

@ In type IIA string theory compactified on a Calabi-Yau threefold X,
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branes, described mathematically by objects E in the derived
category of coherent sheaves C = DbCoh(X ) [Douglas'01]

@ The BPS index or Donaldson-Thomas invariant Q,() counts
stable states with charge v = ch E € H.yen(X, Q) saturating the
BPS bound M(v) > |Z(v)|, where Z € Hom(I', C) depends on the
complexified Kahler moduli z € M.

@ Q,(v) is locally constant on M, but can jump across real
codimension one walls of marginal stability W(vy1,72) € M, where
the phases of the central charges Z(v4) and Z(~.) with
~ = My + Moy become aligned [Kontsevich Soibelman‘08, Joyce Song'08]
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@ In type IIA string theory compactified on a Calabi-Yau threefold X,
the BPS spectrum consists of bound states of D6-D4-D2-D0
branes, described mathematically by objects E in the derived
category of coherent sheaves C = DbCoh(X ) [Douglas'01]

@ The BPS index or Donaldson-Thomas invariant Q,() counts
stable states with charge v = ch E € H.yen(X, Q) saturating the
BPS bound M(v) > |Z(v)|, where Z € Hom(I', C) depends on the
complexified Kahler moduli z € M.

@ Q,(v) is locally constant on M, but can jump across real
codimension one walls of marginal stability W(vy1,72) € M, where
the phases of the central charges Z(v4) and Z(~.) with
~ = My + Moy become aligned [Kontsevich Soibelman‘08, Joyce Song'08]

@ Physically, multi-centered black hole solutions (dis)appear across
the wall [Denef Moore '07, ..., Manschot BP Sen ’11].
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BPS spectrum on local surfaces

@ For a non-compact CY3 of the form X = Ks where S is a complex
Fano surface, there is an injection . : D® Coh(S) — D2(X) lifting
an object E with Chern character v = [r, d, ch,] to a bound state
of r D4-branes wrapped on S, ¢ D2-branes and ch, DO-branes.
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@ For a non-compact CY3 of the form X = Ks where S is a complex
Fano surface, there is an injection . : D® Coh(S) — D2(X) lifting
an object E with Chern character v = [r, d, ch,] to a bound state
of r D4-branes wrapped on S, ¢ D2-branes and ch, DO-branes.

@ At large volume, the central charge is quadratic in complexified
Kahler moduli z% = b2 + it4,

Z(y) ~ - / e ZMach E = —rz22QgupzP + z%d, — chy
S

Qz() reduces to the Gieseker index Q4.(7), given (up to sign) by
the Euler number of the moduli space of Gieseker semi-stable
sheaves on S with Chern character .
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BPS spectrum on local surfaces

@ For a non-compact CY3 of the form X = Ks where S is a complex
Fano surface, there is an injection . : D® Coh(S) — D2(X) lifting
an object E with Chern character v = [r, d, ch,] to a bound state
of r D4-branes wrapped on S, ¢ D2-branes and ch, DO-branes.

@ At large volume, the central charge is quadratic in complexified
Kahler moduli z% = b2 + it4,

Z(y) ~ - / e ZMach E = —rz22QgupzP + z%d, — chy
S

Qz() reduces to the Gieseker index Q4.(7), given (up to sign) by
the Euler number of the moduli space of Gieseker semi-stable
sheaves on S with Chern character .

@ At finite volume, Z receives worldsheet instanton corrections
computable by mirror symmetry. Can we determine Q,(~)
anywhere, and understand what are BPS states really "made of" ?
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@ !ntroduction

e Kahler moduli space of Kp2

e Attractor flow trees and scattering diagrams
0 Large volume scattering diagram

6 Towards the exact scattering diagram

B. Pioline (LPTHE, Paris) BPS Dendroscopy 14/07/2022 6/35



e Kahler moduli space of Kp2
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Kahler moduli space of Kpe

@ The Kéahler moduli space of Kp2 is the modular curve
X1(8) = H/I'1(3) parametrizing elliptic curves with level structure.
It admits two cusps LV, C and one elliptic point o of order 3.
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Kahler moduli space of Kpe

@ The Kéahler moduli space of Kp2 is the modular curve
X1(8) = H/I'1(3) parametrizing elliptic curves with level structure.
It admits two cusps LV, C and one elliptic point o of order 3.

@ The universal cover is parametrized by 7 € H:

Z.(y) = —rTp(r)+dT(r)—chy
T = [\
o = ng A
VN A holomorphic one-form with loga-
= FE T rithmic singularities on &;
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Central charge as Eichler integral

@ Since ;A is holomorphic, its periods are proportional to (1, 7).
Integrating on a path from o to 7, one finds the Eichler-type

integral
()~ (8) [ () o

where C(7) = 7;7((3?93 is a weight 3 modular form for '{(3).
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Central charge as Eichler integral

@ Since ;A is holomorphic, its periods are proportional to (1, 7).
Integrating on a path from o to 7, one finds the Eichler-type

integral
()~ (8) [ () o

where C(7) = 7;7((3?93 is a weight 3 modular form for I'{(3).

@ This provides an computationally efficient analytic continuation of
Z; throughout H, and gives access to monodromies:

1 1 00 1
— ar + 2 T|—=| m dc|-|T
T+ TD mp b a TD

where (m, mp) are period integrals of C from 7, to 370:2.

CTo
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Central charge as Eichler integral

@ At large volume, using C =1 —9q+ ... one finds

1 1
T =14+ 0(q), TD:572+§+(’)(q)
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Central charge as Eichler integral

@ At large volume, using C =1 —9q+ ... one finds
1 1
T=7+0(q), To=57"+5+0(q)
@ For 7 large enough, one can use the Gmﬁ action on space
of Bridgeland stability conditions to absorb the O(q) corrections:

ZH) (1) = —5(s +it)? + d(s +it) — chp

~ ImT "’ ne r
1 5 o Im(T Tp)
E(s +1°) = T ImT

A={E 3 F,u(E) < s, u(F) > s}

[Bayer Macri’11]
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@ Near the orbifold point 7o = —} + Z‘W the BPS spectrum is
governed by a quiver with potential:

E, = O 71 =[1,0,0]
E; = 9(1)[1]7 Vo = [_27 17%
Es = O(-1)[2] v = [1,—1,%
r= 2no — Ny — N3
Z d= n31— no
szﬁiijinZk chy, = —§(n2+n3)

@ The BPS index Q,(y) coincides with the (signed) Euler number
Q¢ () of the moduli space of King semi-stable representations of
dimension v = (ny, N2, n3), with Fl-parameters 0; = ImZ. ().
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Attractor conjecture for Kp-

@ In the chamber 6 > 0,63 < 0, the arrows Zx vanish in any stable
representation, and (Q, W) reduces to the Beilinson quiver
describing normalized torsion-free sheaves on P?:

Xi Y o

Douglas Fiol Romelsberger’00
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@ In the chamber 6 > 0,63 < 0, the arrows Zx vanish in any stable
representation, and (Q, W) reduces to the Beilinson quiver
describing normalized torsion-free sheaves on P?:

Xi Y o

Douglas Fiol Romelsberger’00

@ In [Beaujard BP Manschot’20], we showed that the attractor index
Q. (7) = Q,—y(7) vanishes except for v = 7; or v o< 1 + 72 + 73.
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@ Moreover, the anti-attractor index Qx(v) := Q_, _(v) coincide
with the Gieseker index Q..(v), provided —r < d g 0.
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Attractor conjecture for Kp-

@ In the chamber 6 > 0,63 < 0, the arrows Zx vanish in any stable
representation, and (Q, W) reduces to the Beilinson quiver
describing normalized torsion-free sheaves on P?:

Xi Y o

Douglas Fiol Romelsberger’00

@ In [Beaujard BP Manschot’20], we showed that the attractor index
Q. (7) = Q,—y(7) vanishes except for v = 7; or v o< 1 + 72 + 73.

@ Moreover, the anti-attractor index Qx(v) := Q_, _(v) coincide
with the Gieseker index Q..(v), provided —r < d < 0.

@ A similar conjecture for Q,(+) holds for any toric CY3, giving in
principle access to DT invariants Q.(v) for any ¢ € R [mozgovoy

BP’20; Descombes’21]
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e Attractor flow trees and scattering diagrams
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The Attractor Flow Tree formula for quivers

@ The Attractor Flow Tree Formula expresses the BPS index Qg ()
for any (generic) # € R% in terms of attractor indices by summing
over all possible flow trees: schematically,

Q) ~ D ( > H<7L(v)7’7R(v)>>HQ*(’W)
i1

Y=yt TeTp({vi}) veVr

Denef '00; Denef Greene Raugas '01; Denef Moore'07; Manschot ’10, Alexandrov BP’18

B. Pioline (LPTHE, Paris) BPS Dendroscopy 14/07/2022 14/35



The Attractor Flow Tree formula for quivers

@ The Attractor Flow Tree Formula expresses the BPS index Qg ()
for any (generic) # € R% in terms of attractor indices by summing
over all possible flow trees: schematically,

Q) ~ D ( > H<7L(v)a’7R(v)>>HQ*(’Yi)
i1

Y=yt TeTo({vi}) veVr
Denef '00; Denef Greene Raugas '01; Denef Moore'07; Manschot ’10, Alexandrov BP’18

@ Here, aflow tree T is a binary rooted tree, with edges decorated
with charges ~e, such that v = v,(v) + Vr(v) at each vertex, with
charges ~; assigned to the leaves and ~ to the root.
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The Attractor Flow Tree formula for quivers

@ The Attractor Flow Tree Formula expresses the BPS index Qg ()
for any (generic) # € R% in terms of attractor indices by summing
over all possible flow trees: schematically,

Q) ~ D ( > H<7L(v)a’YR(v)>>HQ*(’Yi)
i1

Y=yt TeTo({vi}) veVr
Denef '00; Denef Greene Raugas '01; Denef Moore'07; Manschot ’10, Alexandrov BP’18

@ Here, aflow tree T is a binary rooted tree, with edges decorated
with charges ~e, such that v = v,(v) + Vr(v) at each vertex, with
charges ~; assigned to the leaves and ~ to the root.

@ Each edge is embedded in R% along 6, = Opv) + A(ve, —)s A >0,
such that the root vertex maps to ¢, and (0v,v.(v)) = (Ov, vR(v))
= 0 at each vertex.
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Split attractor flows

@ The physical picture is that typical multi-centered solutions in
N = 2 supergravity have a nested structure
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Split attractor flows

@ The physical picture is that typical multi-centered solutions in
N = 2 supergravity have a nested structure

@ The linear flow in 6 originates from gradient flow for spherically
symmetric black holes [Ferrara Kallosh Strominger9s]

dz' =
fzg = —9"%Z(7)P
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Split attractor flows

@ The physical picture is that typical multi-centered solutions in
N = 2 supergravity have a nested structure

@ The linear flow in 6 originates from gradient flow for spherically
symmetric black holes [Ferrara Kallosh Strominger9s]

dz' =
fzg = —9”57\2(7”2

@ At each level v, the average distance between the clusters of
charge v.(v) and yg(v) is fixed, but the orientation in S? gives
|(vL(v)s YR(v))| degrees of freedom. In addition, each center of
charge ~; carries internal degrees of freedom counted by Q. (7).
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@ In order to enforce Bose-Fermi statistics whenever two charges

coincide, one should replace () by the rational index
Qo(7) = Xay égg(%) and insert a Boltzmann symmetry factor.

[Manschot BP Sen’11]
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@ In order to enforce Bose-Fermi statistics whenever two charges
coincide, one should replace Qy(~) by the rational index
Qo(7) = 2 dly égg(%) and insert a Boltzmann symmetry factor.
[Manschot BP Sen’11]

@ When the charges ~; are not linearly independent, some splittings
can involve higher valency vertices. One can treat them using the
full KS wall-crossing formula, or perturb # such that only binary
trees remain.
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@ In order to enforce Bose-Fermi statistics whenever two charges
coincide, one should replace Qy(~) by the rational index
Qo(7) = 2 dly éﬂg(%) and insert a Boltzmann symmetry factor.
[Manschot BP Sen’11]

@ When the charges ~; are not linearly independent, some splittings
can involve higher valency vertices. One can treat them using the
full KS wall-crossing formula, or perturb # such that only binary
trees remain.

@ The attractor flow tree formula is consistent with wall-crossing: the
index jumps when z crosses the wall W(~y,(v,), Yr(y,)) @ssociated
to the primary splitting for one of the trees.
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@ There are additional ‘fake walls’ where the topology of the trees
jump but the total index is constant, thanks to the identity

W ©@WW 09 (1 2

(v1,72) (71 + 72,73) +cyc. =0
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@ There are additional ‘fake walls’ where the topology of the trees
jump but the total index is constant, thanks to the identity

W ©@WW 09 (1 2

(v1,72) (71 + 72,73) +cyc. =0

@ The formula can be refined by replacing

LR —y—LYR)
, Yy Yy
<7L7 7H> y71/y

() = Qu(ny) =Y g,y
dly

Physically, y is a fugacity conjugate to angular momentum in R3.
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Flow tree formula from scattering diagrams

@ For any quiver with potential (Q, W), the scattering diagram D is
the set of real codimension-one rays {R(v),y € Z%} defined by
[Bridgeland’16]

R(7) = {¢ € R : (¢, 7) = 0,Q¢(kv) # 0 for some k > 1}
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Flow tree formula from scattering diagrams

@ For any quiver with potential (Q, W), the scattering diagram D is
the set of real codimension-one rays {R(v),y € Z%} defined by
[Bridgeland’16]

R(7) = {¢ € R : (¢, 7) = 0,Q¢(kv) # 0 for some k > 1}

@ Each point along R(~) is endowed with an automorphism of the
quantum torus algebra, (assume ~ primitive)
U) = eXp(i Qc(kry) 4 ), XX = (—y)0
yT—y ky)s  Ayty y v+

m=1

71 +72 e The WCF ensures that the diagram is consistent,
V2 1 [, U(~)*" = 1 around any codimension 2 intersec-

N tion. The Attractor Flow Tree Formula determines out-
going rays from incoming rays at each vertex. jArgiz

Bousseau '20].

7
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Orbifold scattering diagram
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A 2D slice of the orbifold scattering diagram
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A 2D slice of the orbifold scattering diagram
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Flow trees from scattering diagrams

@ More generally, for any ¢ € R/2nZ define scattering rays as
codimension-one loci in the space of Bridgeland stability
conditions

Ro(7) = {Z : Re(67Z(7)) = 0,Im(e ¥ Z(7)) > 0,2(k7) # 0}
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Flow trees from scattering diagrams

@ More generally, for any ¢ € R/2nZ define scattering rays as
codimension-one loci in the space of Bridgeland stability
conditions

Ro(7) = {Z : Re(672(7)) = 0,Im(e ' Z(7)) > 0,2(k7) # 0}

@ For a non-compact CY3, Z(~y) is holomorphic in K&hler moduli,
thus arg Z(y) is constant along the gradient flow of |Z()].
Choosing ¢ such that z € R (), edges of attractor flow trees lie
inside Ry (7e), while vertices lie in Ry (v.(v)) N Ry (vR(v))-
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@ For a non-compact CY3, Z(~y) is holomorphic in K&hler moduli,
thus arg Z(y) is constant along the gradient flow of |Z()].
Choosing ¢ such that z € R (), edges of attractor flow trees lie
inside Ry (7e), while vertices lie in Ry (v.(v)) N Ry (vR(v))-

@ Besides, since Z(v) is holomorphic, initial rays must originate from
attractor points on the boundary.

B. Pioline (LPTHE, Paris) BPS Dendroscopy 14/07/2022 22/35



Flow trees from scattering diagrams

@ More generally, for any ¢ € R/2nZ define scattering rays as
codimension-one loci in the space of Bridgeland stability
conditions

Ro(7) = {Z : Re(672(7)) = 0,Im(e ' Z(7)) > 0,2(k7) # 0}

@ For a non-compact CY3, Z(~y) is holomorphic in K&hler moduli,
thus arg Z(y) is constant along the gradient flow of |Z()].
Choosing ¢ such that z € R (), edges of attractor flow trees lie
inside Ry (7e), while vertices lie in Ry (v.(v)) N Ry (vR(v))-

@ Besides, since Z(«y) is holomorphic, initial rays must originate from
attractor points on the boundary.

@ Fflow trees are subsets of scattering diagrams, determining
sequences of scatterings which produce an outgoing ray R (v)
passing through the desired point z.
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0 Large volume scattering diagram
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Large volume scattering diagram

@ For the large volume stability conditions Z(stt)’ [Bousseau’19]
constructed the scattering diagram D, in (s, t) upper half-plane for
1 =0. Fory # 0, justmap (s,t) — (s — ttany, t/ cos ).

B. Pioline (LPTHE, Paris) BPS Dendroscopy 14/07/2022 24/35



Large volume scattering diagram

@ For the large volume stability conditions Z(stt)’ [Bousseau’19]

constructed the scattering diagram D, in (s, t) upper half-plane for
1 =0. Fory # 0, justmap (s,t) — (s — ttany, t/ cos ).

@ The rays R(~) are branches of hyperbola asymptoting to
t==+(s— %) for r # 0, or vertical lines when r = 0. Walls of
marginal stability W(~,~’) are half-circles centered on real axis.
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Large volume scattering diagram

@ For the large volume stability conditions Z(stt)’ [Bousseau’19]

constructed the scattering diagram D, in (s, t) upper half-plane for
1 =0. Fory # 0, justmap (s,t) — (s — ttany, t/ cos ).

@ The rays R(~) are branches of hyperbola asymptoting to
t==+(s— %) for r # 0, or vertical lines when r = 0. Walls of
marginal stability W(~,~’) are half-circles centered on real axis.

L L
2 4

@ Think of R(~) as the worldline of a fictitious particle of charge r,
mass m? = %d2 — rcho moving in a constant electric field !
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Large volume scattering diagram

@ Initial rays correspond to O(m) and O(m)[1], ie (anti)D4-branes
with m units of flux, emanating from (s, t) = (m,0) on the
boundary where the central charge vanishes.

S

NSNS

2 -l 1 P
o) oen ) o) )
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Large volume scattering diagram

@ Initial rays correspond to O(m) and O(m)[1], ie (anti)D4-branes
with m units of flux, emanating from (s, t) = (m,0) on the
boundary where the central charge vanishes.

N,

@ The first scatterings occur for t > 1, after each constituent has
moved by |As| > % Causality and monotonicity of the ‘electric

potential’ p(v) = d — sr along the flow, allow to bound the number
and charges of constituents.
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Flow trees for v = [0,4, 1)

@ {{-30(-2),20(-1)},0}:
30(-2) - 20(-1)» 0 — E
K3(2,3)K12(1,1) — —156

o {—0(-3),{-0(-1),20}}:

O(-3) & O(—1) = 20 — E
K3(1,2)K12(1,1) — —36

7 Total Qu(r) = —192 = GV
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Flow trees for v = [1,0, —3)

® {{-0(-5),0(-4)}, O(-1)}
O(-5) = O(-4)80(-1) » E
K3(1,1)2 =9

4

O(—-4)® O(-3) —
O(-3)®20(-2) - E
Ks(1,1)?K3(1,2) — 27

@ {—0(—4),20(-2)}
O(-4) - 20(-2) - E
Ks(1,2) — 15

Total: Quo(7) = 51 = x(HilbsP?)
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6 Towards the exact scattering diagram
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Exact scattering diagram

@ The full scattering diagram should interpolate between D}
around T = ico and D¢ around T = 7,, and be invariant under the
action of '{(3).
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Exact scattering diagram

@ The full scattering diagram should interpolate between D}
around T = ico and D¢ around T = 7,, and be invariant under the
action of 'y (3)

@ Under 7 — g7 with n € Z, O — O[n]. Hence we have an doubly
infinite family of initial rays associated to O(m)|[n].
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Exact scattering diagram

@ The full scattering diagram should interpolate between D}
around T = ico and D¢ around T = 7,, and be invariant under the
action of 'y (3)

@ Under 7 — g7 with n € Z, O — O[n]. Hence we have an doubly
infinite family of initial rays associated to O(m)|[n].

@ For |[tant| < ,5; where V = ImT(0) = 25ImLiy(e2™/%) ~ 0.463
only the rays associated to O(m)[0] and O(m)[1] escape to ico,
and merge onto rays in the large volume scattering diagram D};.
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Exact scattering diagram - ¢) = 0




Exact scattering diagram

@ In addition, there must be an infinite family of initial rays coming
from 7 = g with g # 0 mod 3, corresponding to I'{(3)-images of
0(0).
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Exact scattering diagram

@ In addition, there must be an infinite family of initial rays coming
from 7 = g with g # 0 mod 3, corresponding to I'{(3)-images of
0(0).

@ This includes initial rays emitted at 7 = n — % associated to
Q(n+ 1), for ¢y ~ 7, these merge onto initial rays of the orbifold
scattering diagram.
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Exact scattering diagram

@ In addition, there must be an infinite family of initial rays coming
from 7 = g with g # 0 mod 3, corresponding to I'{(3)-images of
0(0).

@ This includes initial rays emitted at 7 = n — % associated to
Q(n+ 1), for ¢y ~ 7, these merge onto initial rays of the orbifold
scattering diagram.

@ We conjecture that the only initial rays are the '1(3) images of the
structure sheaf O, each of them carrying Q(kvy) =1fork=1,0
otherwise.
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Exact scattering diagram - ¢ = &5 mod 27

@ For ¢ = £7, the diagram Dg simplifies dramatically, since the loci

ImZ. () = 0 are lines of constant s := ™o — d,

M e e Ve
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Exact scattering diagram - ¢ = &5 mod 27

@ For ¢ = £7, the diagram Dg simplifies dramatically, since the loci

ImZ. () = 0 are lines of constant s := ™o — d,

@ Hence, there is no wall-crossing between 7, and 7 = ioo when
—1 < 9 <0, explaining why the Gieseker index Q..(7) agrees
with the index Q¢(y) in the anti-attractor chamber.
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Exact scattering diagram, varying ¢

v=10,1,1) =chO¢:
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Conclusion - outlook

@ The scattering diagram is the proper mathematical framework for
the attractor flow tree formula in the case of local CY3. This is
because Z(~) is holomorphic on Mg, so the gradient flow
preserves the phase of Z(+). Moreover, initial rays can only start
from the boundary.
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because Z(~) is holomorphic on Mg, so the gradient flow
preserves the phase of Z(+). Moreover, initial rays can only start
from the boundary.

@ This provides an effective way of computing (unframed) BPS
invariants in any chamber, and a natural decomposition into
elementary constituents. Mathematically, different trees should
correspond to different strata in Mz(~).
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from the boundary.

@ This provides an effective way of computing (unframed) BPS
invariants in any chamber, and a natural decomposition into
elementary constituents. Mathematically, different trees should
correspond to different strata in Mz(~).

@ It would be interesting to extend this description to other toric CY3,
such as local del Pezzo surfaces, and to framed BPS indices.
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Conclusion - outlook

@ The scattering diagram is the proper mathematical framework for
the attractor flow tree formula in the case of local CY3. This is
because Z(~) is holomorphic on Mg, so the gradient flow
preserves the phase of Z(+). Moreover, initial rays can only start
from the boundary.

@ This provides an effective way of computing (unframed) BPS
invariants in any chamber, and a natural decomposition into
elementary constituents. Mathematically, different trees should
correspond to different strata in Mz(~).

@ It would be interesting to extend this description to other toric CY3,
such as local del Pezzo surfaces, and to framed BPS indices.

@ For a compact CY3, arg Z(~) is no longer constant along the flow
and there can be attractor points with Q,(~) # 0 at finite distance
in K&hler moduli space...
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Thanks fo attention !
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