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It is a common misconception, that exact computations in QFT
done using supersymmetric localization
only concern boring quantities like ng — ng,
the differences of the numbers of vacua
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In fact, in 1992 Witten showed that the two dimensional Yang-Mills theory,

Zz(g2Areaz) — / DA 674?2 Js trFanxFa
which, on the one hand, can be exactly solved using Migdal's method
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On the one hand, can be exactly solved using Migdal's method

Zs (g 2Area): Z dlm(/\)2 2gr o —g°Areaz ()
AERep(G)

Admits another expression

Zs(g?Areas) =
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which is a version of Duistermaat-Heckmann formula
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with
X —g*

a moment map of a group G action on a symplectic manifold
(X,w),

/ e@—{mn) — g “erf —functions” associated to px e~ \He:te)
X p€Efixed points
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Witten's approach was to interpret the two dimensional YM

as a “sub-sector” of two dimensional supersymmetric Yang-Mills theory
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QOO

Witten's approach was to interpret the two dimensional YM

as a “sub-sector” of two dimensional supersymmetric Yang-Mills theory

So that the states of YM are the (bosonic) vacua
of the (suitably deformed) super-Yang-Mills
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In this way one can compute

Tr P8

for compact Lie groups, both representation-theoretically (Casimirs and reps)
and geometrically (sums over geodesics = multiply wound loops on max torus)
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A closely related problem is that of the Calogero-Moser system

N
1
Hy = E 5P:‘2+V(V_1)§ U(xi — xj)
i—1

i<j

which, for
1

)= 4sin?(x/2)

can be found “inside” the two dimensional U(N) Yang-Mills
theory... for integer v.

U(x

A. Gorsky,NN’93; More recently N. Reshetikhin, in greater generality
so one can use supersymmetric localization
to compute spectrum and wavefunctions in this non-supersymmetric problem

That was our starting question in 1992
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The supersymmetric localization applied to the appropriate gauge theory

Connects various domains of mathematical physics

Hyperbolic geometry, Bethe ansatz, Isomonodromic equations

Invariants of 3- and 4-manifolds
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Non-integer v not so innocent
Need to be sometimes compact, sometimes non-compact

Cf. quantum gravity/worldsheet string theory
E.Witten /2013

So that the ambient supersymmetric theory lives in more dimensions

Four dimensional N = 2 theories
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Related circle of questions

In quantum field theory and statistical mechanics
one often uses the trick of analytic continuation from Z to C
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In quantum field theory and statistical mechanics
one often uses the trick of analytic continuation from Z to C

Particles as S-matrix poles in complex angular momentum /

T.Regge
Replica trick: (logZ), — (Z"),
G.Parisi
Dimensional regularization: spacetime dimension D
G./tHooft
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Is there any physical meaning to these complexifications?

What physical system realizes complex spin representations of sly?
Which physical system'’s partition function is equal to Z" for complex n?
In string paradigm the number of species is the spacetime dimension
D ~ c, the central charge of the matter sector of the worldsheet theory

What is the physical realization of Virasoro representations with complex c¢?
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Is there any physical meaning to these complexifications?

We shall argue the answer is in extra dimensions and supersymmetry!
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Our first story: Generalization of Dyson-Macdonald identities

—di A
im( an\ |

to

&

Picture of arms and legs by Ugo Bruzzo

(m+eq)(m+er)

o) ae =

Z H (m+ei(an+1) —e2ln)(m —e1a0 + e2(lo +1)) |y
Tex (e1(an + 1) — e2ln)(—e1a0 + e2(l0 + 1))

A

VRS



OO0

Generalization of Dyson-Macdonald identities
to
@:lﬂ;
Picture of arms and legs by Ugo Bruzzo

(m+eq)(m+ep)

Tl(q) £1€2 —

Z H m + 51(ag + 1) — 52/|:|)( —¢e1an + Ez(/g + 1)) N
- O 61 an + 1) — 82/5)( €1an + EQ(/D + 1))
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SUPERSYMMETRIES AND REPLICAS

is there a physical realization of the replica trick? could one refine it?
since the replica symmetry is often broken,

could one introduce some chemical potentials for different S(n) representations?




SUPERSYMMETRIES AND REPLICAS
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SUPERSYMMETRIES AND REPLICAS

For theories with O(n) or U(n)

symmetry one can use Deligne,
category to define “representations”

for complex n... (Binder-Rychkov'2016)

Z q )‘ /Mf ( ) For Chern-Simons theory with
(q) a simple Lie gauge group
one can use Vogel plane to define

_f universal CS theory (Mkrtchyan-Veselov'2012)

Ffr NEZ chired  bosens /‘fgtmio%
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SUPERSYMMETRIES AND REPLICAS

chird Bosens [fermins

Puchibon furchon of J6d ferse
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The refined replica of 2d chiral bosons/fermions = 6d (2,0) tensor multiplet.

Q: Refined replica of 2d chiral WZW ADE theory = nonabelian 6d (2,0) SCFT theory?




SUPERSYMMETRIES AND REPLICAS

The refined replica of 2d chiral bosons/fermions = 6d (2,0) tensor multiplet.
Q: Refined replica of 2d chiral WZW ADE theory = nonabelian 6d (2,0) SCFT theory?

The refined replica of 3d conformally coupled scalar = 11d linearized supergravity

(NN conjecture 2004, A Qkounkgy proof 2015)

Q: what is the ““non-abelian’’ 3d theory whose replicant is M-theory?
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Our next example: complexification of Chern-Simons theory
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Let us start with the simple representation theory

of sl, algebra

Ly =x%0y —2sx, Lg=x0x —s, L_ =0y

Realized in 9(x)dx~* tensors in one dimension.

For 2s € 7, there is a finite dimensional SL(2,C) group representation

w(x):ﬂ)+f1x+...+fzsx2s

ax+ b
cx +d

Y(x)dx S f < > (cx + d)*dx—°
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For 2s € 7Z, there is a finite dimensional SL(2,C) group representation

PY(x) = o + P1x + ... + Posx>*

The space of states of a quantum mechanics of a particle on a sphere 52

Geometric quantization,Kirillov— Kostant—Souriau

/Dqu et/ Pd
. dx A\ dx
dp A dq — ISW

The symmetry of quantum mechanics is SU(2)
The wavefunction 7(x) is a globally defined holomorphic section of O(2s)
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Once s € C the group action is lost
There are various options for the nature of the v(x) functions
Verma modules V{: t(x) = a polynomial in x
Verma modules V;: )(x) = x?*- a polynomial in x~
Heisenberg-Weyl modules HW2: 1)(x) = x*"2. a polynomial in x, x~
No hermitian invariant product for generic sy, 53,53 € C
Only the Lie algebra sl acts

1
1
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We encounter these representations when we think about invariants
51,520,853 __ s1+sy>—s: S2+53—5 s1+5s3—5:;
51'23—(X1—X2)1 2 3(X2—X3)2 3 1(X1—X3)1 3—S2

Is invariant under L%l) + L$,2) + L£,3)
Expand J°»%2%3 in the region

al < Pl < xs
to see 0% € VI @ HWZ™= @V,
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The next stop is the Knizhnik-Zamolodchikov equation

W = Joshosil ¢ (VEQHWE @ HW2 ...V, )5[2

Spn+1

obeying a system of compatible(!) equations

depending on additional parameters zg, z1, ..., 2,11 € CP!

0 —~
W= (k+2)—WV-—-HWV=
\4 (k + )82,- 0
with z-dependent Gaudin Hamiltonians

o 1 92 0 0
H = — 2 —2x; [ s — 5= | — 2s;5;
' ; zi — z; (X” 0x;0x; i <S' Ox; g (9)(,-) 5i%) )
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For 2s; € 7Z. one can restrict W to be polynomials in x; of degree 2s;
For k € Z. finite dimensional space of solutions

conformal blocks of SU(2), Wess-Zumino-Novikov-Witten theory

Tsuchiya— Ueno— Yamada

P N
k+2)—WV - HWV =
(k+ )az,- 0

with z-dependent Gaudin Hamiltonians

A= -1 (L9 4+ P19 — 201

1z — Z -

Interpreted in 3d Chern-Simons theory
as equations for the parallel transport of a quantum state
in geometric quantization of the moduli space
of flat SU(2) connections over n-punctured sphere
NS
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Mathematicians and physicists have studied these equations for generic k € C
Feigin— Frenkel ,Reshetikhin,Babujian— Flume,Feigin— Varchenko— Schekhtman...

conformal blocks of level k sl current algebra

For complex s;'s and k's?
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The answer is provided by the four dimensional gauge theory

Our main example today will be
the super-Yang-Mills with fundamental matter
subject to 2-deformation

ds® = ds2, + ds?
D3 D3

e (heory W/ undamental hyper,
ds%g _ fi(fi) (dr,-2+r,-2dg0, A type theory: UCN) with ZN fundanyental hypers

2]

i=1,2 P, =

\_/ = 818%-1-828@2 i
V = £10,, +£&20,,
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First of all, we can compute exactly quite a few things
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We can compute its super-partition function

Z (a,m,e1,e2;q)

= / DADvDo DG Dy Dn e Se1e
gauge fields + matter+ superpartners

where we fix the asymptotics o(x) — diag (a1, ..., ay) as x — oo
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We can compute its super-partition function
using localization and other clever tricks

Z(a,m,e1,e2;9)

A type ﬂlem“y: L0/6 M with %N funJﬁ'hgenfa(/ ﬁyper;g

Q- bacquound
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We can compute its super-partition function
using localization and other clever tricks
Z(a,m,51,62; q)

fy,ae ﬂtemy UN) with ?’Nfuno?amenfa /Iy/.)t’l’é

2

D. i

1

X

@ _D-background
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We can compute its super-partition function
using localization and other clever tricks

Z(a,m,e1,62;q) = 2P (a,m,e1,e0;9)2™ (a,m, e1, 60 q)



a=1

N
o inst (a,m,e1,e2;q) = Z H q‘)\(o)‘ "
A@) LA

v AL (= mi ) (m5 -0 a)

H (aa —ag+ divj;i/,_j,)

WL (e (1A
a=(a,...,an) Coulomb moduli
m= (mf,...,my) Masses of fundamental hypers
q = e>i" Instanton fugacity
T= 21; + g;” Complexified gauge coupling

J
[T[TTTTI™
[ 11

3

A

e

Cij= 51(i - 1) +82(j — ]_) i jjj



In the classical limit 1,65 — 0

1
Z’(a7m7€17€2; q) = expig(a7m; q)
£1&2

with the special geometry of an algebraic integrable system emerging

genus zero SL(NN) Hitchin system = classical Gaudin



Prepotential F (a, m; q) of classical Gaudin:

Spectral curve C,: Det (Z, gf—’gl —n- IN) =0

Po+Pg+ 1+ P =0

Dy ~ diag (m{ —m*,....mi; — m"),
Py ~ diag(m™,...,mt, m(1 - N))

O ~diag(m—,...,m,m (1 - N)),
N Ndiag(mf—m_,...,mﬁ—m_)

Nm+:mf+...+m7{,,
Nm~ my +...+my

oF f
a; = d s = dg
?{\,- ndg§ 92 1




Hamiltonians H;, i =1,..., N — 1 of classical Gaudin:

ol JpmN~!
— -1 — e
Det <Z,: §—4& 7 N) Z €—-¢&)

11

Quite a few relations
N — 1 independent ones:

Hi =tr(®g+ &) , i=2,....,N

VAV
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That was a classical integrable system

In the limit £1,e2 — 0 of four dimensional gauge theory
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That was a classical integrable system
Now turn the Q-deformation back: 1,22 # 0:

Quantum version of isomonodromic deformation!
N. Reshetikhin'91
Knizhnik-Zamolodchikov/quantum differential equation

Two dimensional version of instanton partition function Givental’ 94
oV ~
k— = H;-W
0z;

OE%O,W:e%-X
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Quantum version of isomonodromic deformation
Knizhnik-Zamolodchikov/quantum differential equation

ow
k— = H;-
ot

.

Two quasiclassical limits
kS .

oerx—o0o, W =c¢ X
0S 0S
aZ,' N Hi <(9X7X,Z>

up to little symplectic subtleties of keeping something fixed
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FOUR DIMENSIONAL TOYS

Surface defects A type theery: UN) with ZN fundamental hypers

Kronheimer+Mrowka'93—95
Losev+Moore+NN-Shatashvili’95
NN'95, NN'04

SR

Q-background

Braverman’04
Gukov-+ Witten’'08
Kanno+ Tachikawa'11

W(a,m e, e0;w,q) = WP (am,eq,e0;w, q)W™ (a,m, g1, 60w, q)

Aw =341
— C|25162 H w, ! X Z H Wkw()‘)qkbulk()\) y
A
_ Zn
oG -)enx(m(a”""’gﬂuf)(mg i)
X i
a,l,;lzl I IT (aa7a5+di,j;i,,j/)

(i)ex(@) (7 jHex(h)
NN'17



OO
BPS/CFT correspondence

NN'04
Regular surface defect partition function

w(a7m751752;w7q) =

Solves 4-point Knizhnik-Zamolodchikov equation
Theorem by NN+ Tsymbalyuk’17—21




BPS/CFT correspondence

NN'04
Regular surface defect partition function

W(a,m,e1,e0;,W,q) =

Solves 4-point Knizhnik-Zamolodchikov equation
with W € (VT @ HW @ HW @ V=)°W

Theorem by NN+ Tsymbalyuk’17—21

For n=4, N=2 it is PVI
Corollary: Using BPZ equations observed earlier by
e1—0 isomonodromic T—function Toschner'15
logT

W~ e Litvinov+Lukyanov+ NN+ Zamolodchikov!16



Regular surface defect in N = 2 vs surface junction in N =4

W(a,me1,ew,q) € (VI@HWRHWE V‘)s["’

Solves 4-point Knizhnik-Zamolodchikov equation

& t
il g 00 0 YO il i |
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Intersecting regular and folded surface defect partition function
v (a,m,e1,e0;w,q) € CV

Solves 5-point Knizhnik-Zamolodchikov equation

\}\[= L{ super-Yang-Mills perspective (using 6d theory)

m o -model
on Hitchin moduli space

moduli space of

o [ flat Ge cmmmmns)(

Hom( 7, (S 4 pts) — G

B

rank N
cc brane

\N »,2 ‘super-Yang-Mills perspective
2|
( )

o ' regular surface defect

V

Q&

Mixed complex spins and finite dimensional reps
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Parallel regular and folded surface defect partition function

W (a,m,e1,e2; W, q)

Solves 5-point Knizhnik-Zamolodchikov equation
with novel type of vertex operators: non-critical Hecke modifications

In progress by Jeong-+Lee+NN’'22

On 4d gauge theory side the observable is defined by

w [ N-1 Zn
S = Y [ <HQw<xw>>
w=0

(x0,x1,..,xy—1)€EL w=0
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Folded surface defect partition function
In progress by Jeong—+Lee+NN’'22

On 4d gauge theory side the observable is defined by
x [ N-1 Zn
yo! < H Qw(Xw)>
w=0

Qu(x) - virtual Chern polynomial (actually, a function)
of an infinite-dimensional bundle of Dirac zeromodes of the w-component
of the restriction of the gauge bundle onto the surface
of the regular surface defect

QOO

N—

(SrF(y)) = >

1
(X07X1""7XN71)€L w=0
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Parallel regular and folded surface defect in the limit e — 0:

- W(a,m,sl;q)
Ve 2 X(a,m,51;W,C|)

Where x solves a 4-point oper
Hecke modifications, studied by Beilinson-Drinfeld
Geometric Langlands

Recently, for N =2,

analytic Langlands correspondence of Etingof —Frenkel—Kazhdan
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General N case, away from the critical level 5 # 0, k # —N
Let us look at the n + 1-point KZ equation

with the punctures at z, z1, ..., z,
with the special HW module attached to z

w(xL, .. XN = (XM)ke (xl, ,xN—1>
. X
XI:W, I:].,,N—].
ok
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General N case, away from the critical level e5 # 0, k # —N
Let us look at the n + 1-point KZ equation

with the punctures at zp, z1, ..., z,
with the special HW module attached to z

0 ST
= (k+ N)— — _9b aA
Do = (k+ )820 ; 20 — Z4

N—-1 3
=(k+ N oV
(k+ )Vo+;ax, o

where the operators Vg, V' mutually commute: [V, V] = 0 = [V/, V/]
and form the first class constraints with the rest of KZ equation

VY
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General N case, away from the critical level 5 # 0, k # —N

0 ST [
—(k=+ N _%5aA
Do = (k+ )320 ; 20 — Z4

N—-1

9 i
_(k+N)Vo+;axioV

where the operators Vo, V' mutually commute: [Vo, V] =0 = [V, V]
and form the first class constraints with the rest of KZ equation

N1N

[Vo, a] - Z

i=1

Nysi i \Jj iTN \/j

WAV DAY
20 — Za

NV

a=1,...,n
O_Za

[®a7Vi] =
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General N case, away from the critical level 5 # 0, k # —N

o " J5gdB
Do = (k+N)—— Y B4

0z — 20— Za

N—

k—i—NVo Z
=1

Thus, one can make a consistent truncation (reduction)

VoW =0, VVW=0, D,W=0

The equations VoW = V/W = 0 are first order PDEs in z, x!, .. .,

Therefore: W(zy,z1,...,z;;X) e Vi®...® V,
can be expressed, via a linear (Hecke) transformation,
through the n-point conformal block

OO



The power of four dimensions: Blown up Surface defects

maqne‘l‘w fluxes N-1
surface defect .’ n = Z




The power of four dimensions: Blown up Surface defects

magnetic fluxes N-1
surface defect 2 -Ff (= Z

w(a7m7517€2;w7q) =

§ Z’(a +ean,m, e — €2, €2; CI) v (a +ein,myeg, e — €1, W, q)
nezN-1
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Limit £ — 0: higher rank analogue of GIL “Kyiv" formula

N = 2, n = 4 case: Gamayun—lorgov—Lysovyy’12

Schematically, T§VI(3, b;q) = Z e"ng(a + n; CI)CZ1
nez
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BPS/CFT correspondence

The R* — R? reduction 1 — 0

corresponds to ¢ — oo, i.e. classical conformal blocks
A.and Al. Zamolodchikov, late eighties
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Going back to the Calogero-Moser system
The surface defect W for the N = 2% theory

solves

d N g2 92
sz 2282+63(63+61 Zp —-x;T)| W

i=1 i<j

€2¢1

Taking €5 — 0 limit is still complicated

some progress with N. Lee
Taking 7 — ioco limit is simple: get wavefunctions for hyperbolic CM
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Another limit, e3 — 00, 7 — ico, A = e3e N finite
Periodic Toda system

Can also be obtained from the Gaudin model we discussed above

Taking €2 — 0 limit is doable
gives Sklyanin-like quantum separation of variables
generalizing integral formulas of Kharchev-Lebedev

OO0
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Future directions:

Connecting quantum geometry and integrability to (topological) string theory

RV

Supersymmetric interfaces to generalize stable envelopes of Okounkov et al.

In progress with M.Dedushenko

N



