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BPS algebra

Question: What is the algebraic structure underlying the BPS sector of
a 4D N = 2 theory?

Definition: BPS algebra (algebra of the BPS states) Harvey-Moore '96
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a 4D N = 2 theory?

Definition: BPS algebra (algebra of the BPS states) Harvey-Moore '96

‘multiplication: Heps ® Heps — HBPs ‘

@ Analogue of chiral algebra of 2D A/ = 2 SCFT

@ Robust and control many aspects of theory (BPS counting, wall-crossing ...)

Today: Type IlA string on a generic toric CY3
° %—BPS sector: D6/D4/D2/D4 wrapping holomorphic cycles

Question: What is its BPS algebra?
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BPS algebra for string on toric CYj3

Will not derive these BPS algebras directly (as fusion of BPS states)
3 different formulations of BPS algebras (in different setups related by duality)

@ Cohomological Hall algebra (CoHA)
@ affine Yangians of gl,

)

@ (truncations of) WV algebras

[without compact 4-cycle]

Wall-crossing
Kontsevich-Soibelman 10

cf. Yaping's talk on Monday
junctions in twisted M-theory
Tsymbaliuk '14, Prochazka '15
Costello, Gaiotto, Oh, ...

AGT, “Corner VOA”
Alday-Gaiotto-Tachikawa '09
Gaiotto-Rap&ak '17, Rap&ak-Prochazka '18
Eberhardt-Prochazka '19, Rap&ak '19
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Relations among different formulations (e.g. C?)

Will not derive these BPS algebras directly (as fusion of BPS states)
3 different formulations of BPS algebras (in different setups related by duality)

@ Cohomological Hall algebra (CoHA) Wall-crossing

Borel subalgebra ﬂ Rapé&dk-Soibelman-Yang-Zhao '18-'20

@ affine Yangians of gl junctions in twisted M-theory
[C?]

Change basis \U, Prochazka '15

Wl+oo Gaberdiel-Gopakumar-L-Peng ‘17

Truncation || Rap&ik-Prochazka '18

@ (truncations of) W algebras AGT, “Corner VOA”

[without compact 4-cycle]

Today: will derive affine Yangian formulation of the BPS algebra
@ based on how they act on BPS states
@ applies to all toric Calabi-Yau threefolds
@ easy to write down explicit relations



BPS quiver Yangians from colored crystals
L-Yamazaki '20

Type IIA string on a generic toric CYj3
o %-BPS sector: N =4 quiver QM (Q, W)
ll define

@ { BPS states } = { 3d colored crystals }
act ’ﬂ ﬂ bootstrap

© BPS algebra = quiver Yangian Y(Q, W)

Advantages
@ apply to any toric Calabi-Yau threefolds
@ explicit algebraic relations
© casy to generalized to trigonometric and elliptic versions

@ casy to describe representations
(corresponding to different chambers and can include open BPS)

4
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Worldvolume theory on D-brane bound state

[1A string on a toric CY3 X
@ 1-BPS sector with D6/D4/D2/DO0 brane on holomorphic 6/2/0 cycles of X

First, consider #(D6, D4, D2, D0) = (1,0, m;,n)
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[1A string on a toric CY3 X
@ 1-BPS sector with D6/D4/D2/DO0 brane on holomorphic 6/2/0 cycles of X

First, consider #(D6, D4, D2, D0) = (1,0, m;,n)
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Worldvolume theory: N = 4 quiver quantum mechanics (Q, W)

toric data X — quiver data (Q, W) (Brane tiling: Hanany Kennaway Vegh ... )
© Quiver Q = (Qo, Q1)
Qo = {vertex a} a: U(N,) gauge group
Q1 = {arrow I : a — b} ®; : bi-fundamentals (N,, Np)

@ superpotential W =3+ [] ®; (with each ®; appearing twice with +)
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Worldvolume theory: N = 4 quiver quantum mechanics (Q, W)

toric data X — quiver data (Q, W)
Q Quiver @ = (Qo, Q1)

(Brane tiling:  Hanany Kennaway Vegh ... )

Qo = {vertex a} a: U(N,) gauge group
Q1 = {arrow I : a — b} ®; : bi-fundamentals (N,, Np)

@ superpotential W =3+ [] ®; (with each ®; appearing twice with +)

(Q,W) <= periodic Q@ = (Qo,Q1,Q2) on R?
(each face in Q2 <> a term in W with £)

X3

LD

c3:

X1

W = Tr[- X Xo X3 4+ X1 X3 Xo]



Each D-brane bound state <+ a crystal configuration

Szendréi ‘07, Mozgovoy-Reineke '07, Ooguri-Yamazaki '08
a D-brane bound state with charge (1,0,m;,n) in toric CYs X

)
a U(1)*-inv. solution (of F/D-term) in quiver QM (Q, W) with rank {N,}
)

a 3D crystal K (uplifted from periodic quiver Q) with { N, number of @}



Each D-brane bound state <+ a crystal configuration
Szendréi ‘07, Mozgovoy-Reineke '07, Ooguri-Yamazaki '08

a D-brane bound state with charge (1,0,m;,n) in toric CYs X

)
a U(1)*inv. solution (of F/D-term) in quiver QM (Q, W) with rank {N,}
)

a 3D crystal K (uplifted from periodic quiver Q) with { N, number of @}

Zcrystal(Q) = 1+q+3q2+6q3+13q4+"' - H (1 _qk)k
k=1

= Zgps(q)



Each D-brane bound state <+ a crystal configuration
Szendréi ‘07, Mozgovoy-Reineke '07, Ooguri-Yamazaki '08
a D-brane bound state with charge (1,0, 7, n) in toric CYs X
3
a U(1)*inv. solution (of F/D-term) in quiver QM (Q, W) with rank {n }

0

a 3D crystal K (uplifted from periodic quiver Q) with {7 number of [}

For C2, no D2 brane and number of DO = number of boxes in plane partition



Each D-brane bound state <+ a crystal configuration

Szendréi ‘07, Mozgovoy-Reineke '07, Ooguri-Yamazaki '08
a D-brane bound state with charge (1,0,m;,n) in toric CYs X

)
a U(1)*inv. solution (of F/D-term) in quiver QM (Q, W) with rank {N,}
)

a 3D crystal K (uplifted from periodic quiver Q)) with {N, number of @}

o om 8

@ q192 @

In general, number of D2 and DO — number of colored atoms in crystal

Zcrystal: ZBPS



BPS crystal from uplifting periodic quiver: (C?/Zy) x C

1 — 2 A1, B2

X1 /X3 Xl\/ /\X:E G C2
bY e B4

1 2

p MR N ) - 7 —

X X3/X
; ‘/ \ 3 W = Tr[—Chm Am Bom

2 1

X, + Cm Bmt1 Amt1]




Framing (consider NCDT chamber first)

© set framed vertex a; = 1

X-
1 2 A1, By
X1/X3 Xl\/ /\X:E 1 C2
X, X.
2 — 1 —5 2 IBI’ Az

3 XI\/ /\X:s X3
2 — 1

Xo

(oo}




Origin of crystal

@ set framed vertex a; = 1 and choose origin o (with color 1) in periodic quiver
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@ path from o = atom [@
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path = atom

@ set framed vertex a; = 1 and choose origin o (with color 1) in periodic quiver

@ path from o = atom [@
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Path equivalence (from F-term constraint)

@ set framed vertex a; = 1 and choose origin o (with color 1) in periodic quiver

@ path from o = atom [@

© path equivalence

10




Depth of an atom

@ set framed vertex a; = 1 and choose origin o (with color 1) in periodic quiver
@ path from o = atom [@
© path equivalence

@ depth = number of closed loop in the path

Xo

X2

depth =0 depth =0
11



Depth of an atom

@ set framed vertex a; = 1 and choose origin o (with color 1) in periodic quiver
@ path from o = atom [@
© path equivalence

@ depth = number of closed loop in the path

depth =0 depth =1

11



Adding rule (a.k.a. melting rule)

@ set framed vertex a; = 1 and choose origin o (with color 1) in periodic quiver

@ path from o = atom [@

© path equivalence

@ depth = number of closed loop in the path

@ Adding rule: to add an atom, all its precusors have to be already in the crystal

allowed

12




Adding rule (a.k.a. melting rule)

@ set framed vertex a; = 1 and choose origin o (with color 1) in periodic quiver

@ path from o = atom [@

© path equivalence

@ depth = number of closed loop in the path

@ Adding rule: to add an atom, all its precusors have to be already in the crystal

not allowed
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Adding rule (a.k.a. melting rule)

@ set framed vertex a; = 1 and choose origin o (with color 1) in periodic quiver

@ path from o = atom [@

© path equivalence

@ depth = number of closed loop in the path

@ Adding rule: to add an atom, all its precusors have to be already in the crystal

allowed
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Equivariant weights of arrows and atoms

@ set framed vertex a; = 1 and choose origin o (with color 1) in periodic quiver

@ path from 0 = atom [ = h(w) = > hr
Iepath[o—[al]
© path equivalence —> Loop constraint Y h; =0
IeL

@ depth = number of closed loop in the path
projection: same h([a) with different depth

@ Adding rule: to add an atom, all its precusors have to be already in the crystal

To derive BPS algebra from crystal, turn on {2 background

and assign equivariant weights to atoms

L-Yamazaki '20
© 11: equivariant weight of arrow I = h([): equivariant weight of atom [&




Equivariant weights of arrows and atoms

@ set framed vertex a; = 1 and choose origin o (with color 1) in periodic quiver

@ path from 0 = atom [ = h(w) = > hr
Iepath[o—[al]
© path equivalence —> Loop constraint Y h; =0
IeL

@ depth = number of closed loop in the path
projection: same h([a) with different depth

@ Adding rule: to add an atom, all its precusors have to be already in the crystal

To derive BPS algebra from crystal, turn on {2 background

and assign equivariant weights to atoms

L-Yamazaki '20
© 11: equivariant weight of arrow I = h([): equivariant weight of atom [&

@ Also impose vertex constraint ), sign, () hr = 0 (gauge symmetry)

© After loop and vertex constraints, the number of parameters=2




Toric CY; = periodic quiver = 3D crystal

(0-1)

(-1.0)
(1,0

(0.1)

conifold

(1-2)

(L.1) (-2.1)

C?*/Zs
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© Quiver Yangians

Outline

14



Bootstrapping BPS algebra
BPS algebra acts on Hpps and reproduces fusion process:
BPS algebra - Hgps — Hpps
a [Ki) = [Ky)
@ Define generators as changing BPS state (crystal) by smallest unit (atom)

raising (@ : K) = |K + @)

Cartan o : IK) — |K)

lowering ) K) — |K — [@)
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Bootstrapping BPS algebra

BPS algebra acts on Hpps and reproduces fusion process:
BPS algebra - Hgps — Hpps
a [Ki) = [Ky)

@ Define generators as changing BPS state (crystal) by smallest unit (atom)

raising e : K) = |K + @)
Cartan o : IK) — |K)
lowering  f(*) K) — |K — [@)

@ Fix actions of (e, 1, f) on any crystal |K)
© Find all relations of (e, %, f) on any crystal |K) (F(e, v, f)|K) = 0)
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Bootstrapping BPS algebra
BPS algebra acts on Hpps and reproduces fusion process:
BPS algebra - Hgps — Hpps

a |Ki)

= |K2)

@ Define generators as changing BPS state (crystal) by smallest unit (atom)

raising e :

Cartan '@ :

lowering )

@ Fix actions of (e, 1, f) on any crystal |K)

© Find all relations of (e, %, f) on any crystal |K) (F(e, v, f)|K) = 0)

K) — |K + @)
K) = IK)
K) = K — @)

<e, f>
BPS algebra = ——————
{F(e,v, f) =0}
Expect (", ("), f{*)) co—dim
@ e

CO=dm  WUE=Y I

J J

1=y

J

flo

ZJi+1

a € Qo



Ansatz for action of BPS algebra on BPS crystal i vamazaki 20

Cartan: ¢ (2)|K) = 0@ (2)[K)
raising: e (2)|K) = Z E(Izj—hl({@—'_)@)m + [al)

lowering:  f(9(2)|K) = Z F(Izj—hI({@_)@)K — [a)

16



Ansatz for action of BPS algebra on BPS crystal i vamazaki 20

Cartan: @ (2)|K) = U\ (2)|K)

raising: e (2)|K) = Z E(Izj—;({l;r)@m + [al)
lowering:  f(9(2)|K) = Z F(Kj—}mﬁi — [a)

Need to define Wk, £ and F such that E and F are non-zero only when |K =+ [&) are

valid crystal states.

@ Example: (C?/Z3) x
ﬁ_) |K+@>={i , zg , J%ﬁ }
_—
W B

16



Ansatz for action of BPS algebra on BPS crystal i vamazaki 20

Cartan: @ (2)|K) = U\ (2)|K)

raising: e (2)|K) = Z E(Izj—;({l;r)@m + [al)
lowering:  f(9(2)|K) = Z F(Kj—}mﬁi — [a)

Need to define Wk, £ and F such that E and F are non-zero only when |K =+ [&) are

valid crystal states.

@ Example: (C?/Z3) x
ﬁ_) |K+@>={i , zg , J%ﬁ }
_—
W B

How to realize this?
16



Ansatz for action of BPS algebra on BPS crystal i vamazaki 20

(C3, affine Yangian of gl;: Tsymbaliuk '14, Prochazka '15)

PP @)K = U (2)K), T (W) =95 (2) [] ¢ (u— h(®))
Blek
£/Res, @) U (u)
(a) _
e (2)|K) = K +a@),
@E%d(K) 2= h(@)
+1/(=1)1eIRes, _p @ ¥\ (u
fRIK = > vy h‘ @i )\K—@>,
[a] € Rem(K) %= h(=)

17



Ansatz for action of BPS algebra on BPS crystal i-vamazaki 20

(C3, affine Yangian of gl;: Tsymbaliuk '14, Prochazka '15)

w(ﬂ)(z”K) = \Ilgl)(z)u{) , \I/(a) w(a) H SDa<:b u . ))
[blek
£y/Res,u @ W (0)
(a) K) = K
/(D Res, @) ¥ (1)
(a) K) = K — ’
£ )IK) @Egn(m ¥ ) K - @)

Demand:  {poles of Wi (z)} = Add®(K) URem ® (K)

@ Provide all the necessary poles.

@ No redundant pole (“Adding Rule” is satisfied automatically)



Ansatz for action of BPS algebra on BPS crystal i-vamazaki 20

(C3, affine Yangian of gl;: Tsymbaliuk '14, Prochazka '15)

YORIK) =P E)IK), @) =9(7() [] ¢ @ - h@)
Blek
. +1/Res, @) Vi (u)
e (2)|K) = Z \/ @) K+ @),
[a] € Add(K)
== (—1)'“‘Resu=h(@)\ll§<a)(u)
[a] € Rem(K)

Demand:  {poles of Wi (z)} = Add®(K) URem ® (K)

6a i
1 )
ground state: w(()a)(z) = (;) (NCDT chamber)

17



Ansatz for action of BPS algebra on BPS crystal i vamazaki 20

(C3, affine Yangian of gl;: Tsymbaliuk '14, Prochazka '15)

PO RIK) =@ )K), ) =98 (2) [] " (- h(®)
Blek
. +1/Res, @) Vi (u)
)K= Y \/ e K+ @),
[a] € Add(K)
£4/(=1)leIRes @, Ui’ (u)
fPRK = Y \/ T h@) K- @),
[a] € Rem(K)

Demand:  {poles of Wi (z)} = Add®(K) URem ® (K)

|b—al|xab HIG{a—)b} (U + hI)
[lieqvosay(w—hi)

“u) = (-1)

Bonding factor: ©

17



Example: (C?/Zs) x C

@ Loop constraint: hy + ha + hs =0

18




Example: (C?/Zs) x C

@ Loop constraint: hi + ha + h3 =0

@ building blocks of W' (u)

1«1,y _ U+ths 12, _ (u+hi)(u+hs)
() = 52 ) = T i
2«1 _ (U+h1)(u+h2) 242 _ u+h
(u) m P (u) = w— hz

@y 1
o(u)—z @

() =1

@ Ground state contribution:

da,1
() (2) = (%) (NCDT chamber)

@ Bonding factor:

b (u) = (_1)\b—>alxab Ireqamsey (w+ ha)
HIe{IHa}(u —hr)



Example: (C?/Zs) x C

@ Loop constraint: hy + ha + hs =0

@ building blocks of W' (u)

a U—hg (u—hl)(u—hg)
_ (u+ha)(u+ho)
(u = ha)(u = he)

1
6w =~

2e2(y) — u + hs

(2) _ 2<1
Pw=1 &@ =

%)

@ Check cyclicity (i.e. all necessary poles) and adding rule (i.e. no redundant pole)

7 ) = & +hs o2 (w) = (u+ h1)(u + ho)

18




(C%/Zsy) x C crystal: vacuum

@ vacuum |0)
@ Charge functions

z

{ W () = v (2) =

hg
1

h1 h; hl\/ /\h;

2*>

fl;; h 1\/ ,\/l,;;\/ll,|

2 }*> 1 vacuum
12

19



(C%/Zsy) x C crystal: vacuum

@ vacuum |0)
@ Charge functions

z

{ W () = v (2) =

}71 hl /\}73 6(1)
ha\ h1/ /l;\//ll
2 — 1 vacuum Fo

ho — 0

19



(C%/Zsy) x C crystal: vacuum

@ vacuum |0)
@ Charge functions

{ P (2) = P (z) =

1
z
U2 (2) =P (2) = 1

LI
hy h;;\hl\/ /\h;; i} 0

2 —— 1 vacuum f(2)

o
)

19



(C%/Zsy) x C crystal: level-1

@ 1-atom state |@), with h(@) =
@ Charge functions

v (2) =9 (2) - 0" (2

— h(m))

z+ hs
Z—hg

ho

1 — 2
hy h;\ th
2 *}
h3 /Ll\/ /1/:;\//1,1
2 — 1

ho

19




(C%/Zsy) x C crystal: level-1

@ 1-atom state |@), with A(@M) =0
@ Charge functions

1 h
¥ =4 (2) ' e - h) = £ - T
3
F ()
P —

vacuum

19




(C%/Zsy) x C crystal: level-1

@ 1-atom state |@), with A(@M) =0
@ Charge functions

W) = 40) ¢ e - @) = 5 - EE
(24 h)(z + ha)

V() =4 () "7 —hD) = s

o2

19




(C%/Zsy) x C crystal: Adding rule

@ 2-atoms state |@2)), with A(@) = 0, A(2) = k1
@ Charge function for blue atoms:
Vi (2) = 957 (2) - ' Tz = h(@) - ¢ (= — h(@ )

1 G Aetha—h)
CF (z—h3) (z—2h)(z=hr=T)

(cancelation due to hy + hg + hs = 0)

20



(C%/Zy) x C crystal: level-2

@ 2-atoms state |@2)), with A(@) = 0, A(2) = k1

@ Charge function for blue atoms:

TP (2) = 9i(2) - 'z - k(@) - " (2 — (@ )

1 s Aetha—h)
£ (z—h3) (2—2h)(z=hr="T3)

(cancelation due to hy + hg + hs = 0)
v

/\h;;\/]l,l g

20



(C%/Zsy) x C crystal: Adding rule

@ 2-atoms state |@2)), with A(@) = 0, A(2) = k1
@ Charge function for blue atoms:
U (2) = 967 (2) - 'z — b)) - 0"z - h(@ )

1 (z+413E) 2z +ha — ha)
;,/ (z—hs) (z—2h1)(z=hr="3)

(cancelation due to hy + hg + hs = 0)
v

hq\/hg hq xh%

ho
2 —
h;;/\h hs /hq e(l)é

ha

20




(C%/Zsy) x C crystal: Adding rule

© 3-atoms state |[@M211[22), with h(@) =0, ~(2L1) = h1 h(Z2) = h2

@ Charge function for blue atoms:

TP (2) = 9i(2) - 0 (2 — h(@)) - " (2 — A(@L)) - "2 (2 — h(@2))

_1 Gy fethe—h) 2zt hi—ha)
Z (z—h3) (z—2h1)(z=hr="T3) (z—2h2)(z—h1— h2)

(cancelation due to hy + hg + hs = 0)
v

-

20




(C?/Zy) x C crystal: Adding rule

© 3-atoms state |[@M211[22), with h(@) =0, ~(2L1) = h1 h(Z2) = h2

@ Charge function for blue atoms:

U (2) = 460(2) - " e — @) - 02z - A(@L)) - 1 (2 — h(@2))

1 ) Artha—h) 2zt hi—ha)
Z (z—h3) (z2—2h)(z=hr="3) (z—2h2)(z—hi— hs)

(cancelation due to hi + hg + hs = 0)

v

Poles of \I'g)(z) encode the positions of [ € Add(K) and Rem(K)

Poles are always pushed to the surface of crystal !
Only necessary poles are present. No redundant pole.

“Adding rule” is automatically implemented.

20



Quadratic relations in BPS algebra 1 vamazaki 20

P (2) p® (w) = O (w) (¥ (2) ,
[6@)(2,)7 f(b) (w)} ~ 5P w(a)(z) - ¢(b) (w) ’

zZ—w

PO () ¥ (W) = 0z~ w) P ) ¥ ()

e (z) e (w) ~ (=) — w) e w) e (2)
(@) £ ) = "z = w) 7 FO @) 9 ()

£ O @) ~ (1) =) FOw) ).

21




Quadratic relations in BPS algebra 1-vamazaki 20

¥ (2) p® (w) = 9@ (w) 1 (2) ,
692, 5O )}~ —gms 22 =0 @)

zZ—w

~ " (2 — w) ¥ (w) () |
~ (=)= — ) e (w) €@ (2)
~ " (2 = w) " fO () 9 (2)

Read off range of mode-expansions of (e(®)(z), (¥ (z), f(*)(z)) from algebra’s action

on crystals:

@ e/f:
oo (a) oo f](a)

a € a
e (2) = zj+1 and (2 =X i+l

=0 =0
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Quadratic relations in BPS algebra 1-vamazaki 20

P @(2) p® () = O (w) 'V (2) ,
~ Wb 1/)((1)(2,) —p® (w)

zZ—w
= "z = w) e () ¥ (2).
~ ()M = w) e () ()
= "z =)™ SO )9 ()
O w) ~ (D) = ) O () )

)

- a D p— H a—r (7J4+h )
© Using " ~"(u) = (1) ven ppreletlis

w/o compact 4-cycle = non-chiral quiver = homogenous cpa¢b(u)
w  compact 4-cycle = chiral quiver = inhomogenous ¢*<°(u)
o ¥ tovel
— Y@y = { =0 ﬁ@) (w/o compact 4-cycle)
> 2 oo 7T (W/ compact 4-cycle)
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Quadratic relations in BPS algebra 1-vamazaki 20

¥ (2) p® (w) = 9@ (w) 1 (2) ,
692, 5O )}~ —gms 22 =0 @)

zZ—w

= (s = w) e (w) ¥ (2),

~ (DI = w) e ) e (2)

= " (e = w) 7 FO ) (@),
)" = w) 7 O () )

o}
g
2

Plug in mode expansions to algebraic relations and take singular terms:
@ For all quivers

[ 69 =0 and [0, 40} = a0,

22




Quadratic relations in BPS algebra 1-vamazaki 20

P (2) O (w) = O (w) p@ (2),
692, 5O )}~ —gms 22 =0 @)

zZ—w

)

w(a) =~ §0a<:b(2 _ ’U}) e(b) (’LU) ’l/)(a) (Z) ,
N (_1)|a\|b|soa<:b(z — w) e(b)(w) e(“)(Z) ,
~ "z —w) T P W) (),

)" = w) 7 O () )

=
g
2

Plug in mode expansions to algebraic relations and take singular terms:
@ For all quivers

[ 69 =0 and [0, 40} = a0,

@ -e, Y-f, e-e and f-f relations depend on quiver:

s, Thehs{vs e} =([Virs, ex] = Blsra, enia] + 3[40, ental = [, ents])
. + (h1hz + hohs + haha) ({541, ex] — [¥5, exy1])

22



Quadratic relations in BPS algebra 1-vamazaki 20

%D (2) O (w) = p® (w) 9@ (2) ,
[ 2, £ (w) }N g0 b1/)<“)(z2:1¢v(b)(w) ’
¢(a (2) e (w) = p* (2 — w) e® (w) Y@ (2)
@(2) e (w) ~ (1)1l (z — w) e (w) e (2)
1/J(a)(2) O (w) > 0" (z — w) 7! fO(w) 9@ (2),
FO2) O (w) ~ (1) (2 —w) T O (w) fO(2) .

Plug in mode expansions to algebraic relations and take singular terms:
@ For all quivers

[ 69 =0 and [0, 40} = a0,

@ -e, Y-f, e-e and f-f relations depend on quiver:
c3 . hihahs{vj, ex} = ([j+3, ex] — 3[j+2, ent1] + 3[Wj41, env2] — ¥, ex+3))
. + (hiha + hohs 4 haha) ([$541, ex] — [, €x41])
confirmed experimentally from N = 4 quiver QM Galakhov-Yamazaki '3§



Higher order relations in BPS algebra 1 vamazaki 20
@ How do we know we have found all the higher order relations?

@ BPS algebra should capture entire Hpps:

vacuum character of BPS algebra = Zpps = Zcrystal

23



Higher order relations in BPS algebra 1 vamazaki 20
How do we know we have found all the higher order relations?

BPS algebra should capture entire Hpps:

vacuum character of BPS algebra = Zpps = Zcrystal

Demanding this can determine all higher order relations
Reproduce Serre relations for affine Yangian of gl,,,,,

e.g C*: Sym,, ., sy (22 — 23) e(21) e(22) e(z3) ~ 0
SYm,, .y 25y (22 = 23) f(21) f(22) f(23) ~ 0

Open problem: find all higher order relations for general quiver Yangians

23



Special cases

@ Toric CY3: xzy = zmw"
n
0.1) g o o ™D

(0,0) 1::¥.

man (m+mn,0)

quiver Yangian = affine Yangian of gl ,

Ueda '19
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Generalize to trigonometric and elliptic version

Galakhov-L-Yamazaki '21
bond factor

HI — C(U + h’I)
a<=b — (_1\|lb—alxap €{a—b}
2 S [Lsepmay Slu—hy)

rational — trigonometric — elliptic

u (rational) == quiver Yangians
C(u) =< ~sinhfu (trig.) = toroidal quiver algebras
~ 0, (u) (elliptic) == elliptic quiver algebras

Bootstrap from crystal representation before central extension
Turn on central extension and fix by consistency

Confirm from gauge theory (2D (2,2) and 3D A = 2 theory)

25



@ Representations

Outline

25



So far: canonical crystal

@ So far: the crystal starts with a single atom and grows infinitely.
@ This is realized by

5a,a
ground state charge function: ¢é“)( 2) = (1)
z

@ For example: the shape of the infinite crystals are
c3? resolved conifold

.
-

26



So far: canonical crystal

@ So far: the crystal starts with a single atom and grows infinitely.
@ This is realized by

5a,a
ground state charge function: wéa)(z) = (1)
z
@ For example: the shape of the infinite crystals are
c3? resolved conifold

.
-

@ Translate to framing:

ai, a2
L
Qo = Bi23 Qo = .—>C®.
© R & L by, by 2

@ Corresponds to counting of closed BPS invariants in the NCDT chamber.

26



From canonical crystal to other crystals

@ How to describe open BPS states and/or other chambers?
@ open BPS states (additional D2 ending on D4 wrapping Lag cycles in CY3)
Eg (C3):

Open: plane partition with

Closed: plane partitions L .
non-trivial asympotics

(labeled by three Young diagrams)

27



From canonical crystal to other crystals

@ How to describe open BPS states and/or other chambers?
@ Wall-crossing to other chambers

Eg (resolved conifold):

Non-commutative DT chamber chamber with three initial atoms
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From canonical crystal to other crystals
@ How to describe open BPS states and/or other chambers?
@ Wall-crossing to other chambers

Eg (resolved conifold):

Non-commutative DT chamber chamber with three initial atoms

@ How to describe crystals with different shapes (using canonical crystal)?
For a given (Q, W)
@ Subcrystal of canonical crystal (different boundary with same internal structure).

@ Can decompose arbitrary subcrystals as superposition of positive/negative
canonical crystals

28



Decomposing subcrystal *C into positive/negative C

@ step-1: near the starting point of {C, determine the positions of positive C,

@ step-2: determine the overlaps of positive Cy
—> add negative Cy to cancel the overlaps

Co

29



Decomposing subcrystal *C into positive/negative C

@ step-3: determine the overlaps of negative Cy
=—> add to cancel overlaps of negative Cy

Co

_ — RPN — oA A + RPN
rNE NN B VAR VI BV VIR VIEN
NN N RV VNN
v LSRN S v
v (RN v LSRN
v LSRN A LSRN
’ A LN v LN
Cqa NCy Cq NCe CqaNCpNCe

@ step-4: continue until *C is reproduced (inclusion-exclusion principle)

29



Decomposing subcrystal *C into positive/negative C

@ (optional) final step: truncate by adding negative Cy

Co

Can use this to describe 2D slices of crystal
(e.g. C3: Fock module v.s. MacMahon module)

Can generate very general simply-connected subcrystals this way.
For more examples, see Galakhov-L-Yamazaki '21
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Decomposing subcrystal “C into positive/negative C

@ Eg: different chambers for resolved conifold:

Non-commutative DT chamber chamber with three initial atoms
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Decomposing subcrystal “C into positive/negative C

@ Eg: different chambers for resolved conifold

Non-commutative DT chamber

chamber with three initial atoms

3 positive canonical crystals

2 negative canonical crystals

30



Decomposing subcrystal “C into positive/negative C

@ Eg: different chambers for resolved conifold

Non-commutative DT chamber chamber with three initial atoms

Suberystal *C describe non-vacuum representations

vacuum representation non-vacuum representation
(a)
E) s— (a)
1\ (a) [l (z—2-5")
We = (1) () = g

Hsoc+:1(z - Z—&-gl))
pole z+<a) = weight of first atom of positive Cy

zero z_ (%) = weight of first atom of negative Cg X




Decomposing subcrystal “C into positive/negative C

@ Eg: different chambers for resolved conifold

Non-commutative DT chamber chamber with three initial atoms

Need more general mode expansions of 1@ (z)

(define “shifted” quiver Yangians)

@ = 9 N
@ = J (a) — J
(0 (Z) ; il v(z) = Z it1+s(@)
J
unshifted quiver Yangian quiver Yangian with shift s(*) = sﬁf) — s

Galakhov-L-Yamazaki %%



From subcrystal to framed quiver

@ Eg: different chambers for resolved conifold

Non-commutative DT chamber chamber with three initial atoms

Different representations <= diffrent framings

. ai, a2 1, 7T9,T3 1 ai, a2 2
s B o= R
o0 L by, by 2
W = Tr [baazbia1 — bzaibiaz]. Wéi) = Tr[b2azbiar — baaibiaz

2
+ Z Sj (azT‘Z‘ - a17‘i+1)}.
i=1 33



© Summary

Outline

33



Summary: BPS algebra for IIA string on general toric CY3

@ Bootstrap construction
%—BPS sector: N = 4 quiver quantum mechanics (Q, W)
ﬂ define
{ BPS states } = { 3d colored crystals }
act ﬂ lL bootstrap
BPS algebra: quiver Yangian Y (Q, W)

P (2) O (w) = O (w) p((2),
[69), 70w} ~ g2 80 w)

zZ—w

~ "z — w) e® (w) ) (2)
~ ()M () e () 6 2)
~ "=z — w) ™ O (w) 9 (2),

=t
S
i

—1)l Pt (o — ) fO () £ (z) -

3%



Summary: BPS algebra for IIA string on general toric CY3

@ Bootstrap construction
%—BPS sector: N = 4 quiver quantum mechanics (Q, W)
ﬂ define
{ BPS states } = { 3d colored crystals }
act ﬂ lL bootstrap
BPS algebra: quiver Yangian Y (Q, W)

@ Generalized to trigonometric and elliptic versions

© Subcrystals (or different framing) give non-vacuum representations
(describing other chambers, open BPS invariants, and more)
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Applications

Computing BPS partition functions

@ Subcrystal representations: include different chambers, open BPS, and more.
Zsubcrystal = ZBPS

@ Counting poles of Wi gives an efficient way to compute Zsyberystal-

mathematica program by B. Pioline

Deriving Bethe Ansatz Equation in Gauge/Bethe correspondence

(for non-chiral quivers) Nekrasov Shatashvili ‘09
@ spin-chain — crystal-chain

@ Express Lax operators, transfer matrices, off-shell Bethe vectors in terms of
quiver Yangian generators

@ BAE reproduces vacuum equation of the corresponding quiver gauge theory

Galakhov-L-Yamazaki '22
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Future directions

Dictionary to other formulations of BPS algebras
e map to VOA?
e map to Doubled CoHA?

Relation to gluing constructions L-Longhi '19, L '19
(C?/Zs) x C Resolved conifold
(2,-1) O
eg. (1,0 (1,0) (1,0
(1,0) ’
Off O
Test the conjecture that quiver Yangins related by quiver mutation are

isomorphic L-Yamazaki '20
Characterize all the subcrystal representations in terms of D-branes

Generalize to toric Calabi-Yau fourfolds or even beyond
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Future directions

Dictionary to other formulations of BPS algebras
e map to VOA?
e map to Doubled CoHA?

Relation to gluing constructions L-Longhi '19, L '19
(C?/Zs) x C Resolved conifold
(2,-1) O
e.g. (1,0) 0o (=1,0)
(1,0) ’
0, 1) (0,1)
Test the conjecture that quiver Yangins related by quiver mutation are

isomorphic L-Yamazaki '20
Characterize all the subcrystal representations in terms of D-branes

Generalize to toric Calabi-Yau fourfolds or even beyond

Thank you for your attention !
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Gauge/Bethe correspondence from quiver BPS algebras
Galakhov-L-Yamazaki '22

N
V4 &
7 exp(alV) Algebraic
in2D N Bethe ansatz

Quiver
gauge
S theory &
RHEOTY

SUSY
localization

in1lDN =4

R-matrix
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