BOOTSTRAPPING ADS/BCFT

Caltech Yuya Kusuki

Based on [arXiv:2206.03035]

AdS/BCFT [Takayanagi] [Fujita, Takayanagi, Tonni]

$$I_{grav} = -\frac{1}{16\pi G_N} \int_M d^3x \sqrt{g}(R+2) + \sum_i m_i \int dl_i - \frac{1}{8\pi G_N} \int_Q d^2x \sqrt{h}(K-T)$$

Semiclassical gravity ($c = \frac{3}{2G_N} \gg 1$) with massive particles and **ETW branes**

AdS/BCFT [Takayanagi] [Fujita, Takayanagi, Tonni]

$$I_{grav} = -\frac{1}{16\pi G_N} \int_M d^3x \sqrt{g}(R+2) + \sum_i m_i \int dl_i - \frac{1}{8\pi G_N} \int_Q d^2x \sqrt{h}(K-T)$$

Induced metric: $h_{\mu\nu} = g_{\mu\nu} - n_{\mu}n_{\nu}$.
Extrinsic curvature: $K_{\mu\nu} = h_{\mu}^{\rho} h_{\nu}^{\lambda} \nabla_{\rho} n_{\lambda}$
Neumann b,c, is imposed on the
brane (Einstein eq. of brane).
 $K_{ab} - Kh_{ab} = -Th_{ab}$
ETW brane
AdS₃
Here by brane
 $\partial(ETW) = bdy, of CFT$

Issues in AdS/BCFT

ssues in AdS/BCFT Selfintersection? \bigcirc $\frac{c}{32} < h_i$ $0 < h_i < \frac{c}{32}$ $h_i = 0$

Massive particle produces deficit angle $\delta\theta = 2\pi \left(1 - \sqrt{1 - \frac{c}{24}h_i}\right)$ Pointed out by [Geng, Lust, Mishra, Wakeham] [Kawamoto, Mori, Suzuki, Takayanagi] [Bianchi, De Angelis, Meineri] The first one proposed that $h_i \in \left[\frac{c}{32}, \frac{c}{24}\right)$ should be excluded in holographic CFT

Comment: Bottom-up construction is very naïve. Not so surprising if something wrong happens.

Actually, this bottom-up model still works as we will show.

Our goal is to give a **CFT understanding** of

• intersection

• self-intersection

and an understanding of Island/BCFT correspondence

New ingredient (boundary primary)

Primary operator living on boundary, which can change boundary condition. Same transformation law under conformal mapping.

Review of BCFT

= Energy corresponding to the state on the strip

Note:

 $\mathcal{F}_{\overline{n}}^{ji}(p|z) = \text{Virasoro block.}$

Because Ward id (with bdy) is equivalent to Ward id (without bdy) by mirror method

Note:

 $\mathcal{F}_{\overline{n}}^{ji}(p|z) = \text{Virasoro block.}$

Because Ward id (with bdy) is equivalent to Ward id (without bdy) by mirror method

$$\sum_{p,\bar{p},N,\bar{N}} \langle \phi_{i} | \phi_{j} | L_{-N} \phi_{p} \rangle \langle \phi_{\bar{\imath}} | \phi_{\bar{\jmath}} | L_{-\bar{N}} \phi_{\bar{p}} \rangle \langle L_{-N} L_{-\bar{N}} \phi_{p,\bar{p}} \rangle_{disk}$$

$$= \sum_{p,\bar{p},N,\bar{N}} \langle \phi_{i} | \phi_{j} | L_{-N} \phi_{p} \rangle \langle \phi_{\bar{\imath}} | \phi_{\bar{\jmath}} | L_{-\bar{N}} \phi_{\bar{p}} \rangle \langle L_{-N} \phi_{p} | L_{-\bar{N}} \phi_{\bar{p}} \rangle$$

$$= \sum_{p,N} \langle \phi_{i} | \phi_{j} | L_{-N} \phi_{p} \rangle \langle \phi_{\bar{\imath}} | \phi_{\bar{\jmath}} | L_{-N} \phi_{p} \rangle$$

Review of BCFT [Lewellen]

Analytic Bootstrap

bootstrap

q

vacuum block approximation by $z, \overline{z} \rightarrow 0$ (Cardy formula) $\overline{z} \rightarrow 0$ (large-spin)

 $\mathbf{r} \mathcal{F}_{ii}^{ii}(0|1-z)$

×

Boundary Averaging

• state/operator-like correspondence

 $|B^{a}\rangle = g^{a} \sum_{p} C^{a}_{p\mathbb{I}} |p\rangle\rangle$

Assumption:

$$C^a_{p\mathbb{I}} = \delta_{p\mathbb{I}}$$

boundary is

by $C_{p\mathbb{I}}^a$

characterized

Note: $C_{p\mathbb{I}}^a \neq 0$

in [YK, Zixia]

will be considered

suggested by

- no interaction with brane [Takayanagi], [Fujita, Takayanagi, Tonni], [Suzuki, Takayanagi]
- island model

[Suzuki, Takayanagi]

 \rightarrow It is worth investigating this condition by bootstrap.

Implication

$$\begin{vmatrix} c = 1 + 6Q^2, \\ h_i = \alpha_i (Q - \alpha_i) \end{vmatrix}$$

Black Hole

ADM mass = lowest primary dimension $\alpha_P = 2\alpha_i$

self-intersection bound

$$h_i \leq \frac{c}{32} \quad \Leftrightarrow \quad h_P \leq \frac{c}{24}$$

 \rightarrow self-intersection can be avoided by **blackhole formation**

Comments

Same vacuum block approximation of bootstrap

 $h_i \ge \frac{c}{32}$

• Relation to light-cone bootstrap

$$O_{i}$$

$$O_{i}$$

$$h_{i} \ge \frac{c}{32}$$

spinning particle

• Relation to island model

ETW

Comments

• ADM mass from gravity side

ADM mass calculation on gravity side is complicated, but we show an exact match between CFT calculation & gravity calculation in [YK, Wei] [Kawamoto, Mori, Suzuki, Takayanagi, Ugajin]

Note:

Averaging sometimes simplifies calculations. In this sense, averaging is thought of as a useful tool to evaluate something in gravity.

Discussion

• Explicit example ?

One simple realization may be obtained in averaged Narain CFT

- Wormholes in BCFT ? [under consideration] Averaging simplifies evaluation of classical saddle. One may obtain a new understating of wormholes in braneworld
- Bootstrapping AdS/BCFT [YK, Wei] Many loopholes in AdS/BCFT Bootstrap can give correct formulation of AdS/BCFT
- Detailed connection to island model ?