Topological Langlands duality via skeins

Ben—2vi 6ummmqham Safronov
Letf M be an oriented 3—manifold, and 6 a reductive group.

Fix g In c

The skein module Sk (M) s The span over C ot G6—colored
ribbon graphs in M, modulo the skein relations.

"A two—dimensional vector space has The marvelous properfy that
any Three veclors satisty a velafion of linear dependence."
E. Wiffen



Skein modules for a general 6:

Finite dimensional

A typical G—ribbon graph looks like this: [ co}i\&—t@iﬁzﬁ?/
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Skein relations are the (local) kernel of Reshetikhin—Turaev evaluation.
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(Reshetikhin—Turaev, Walker 40's)




Basic tfacts abouf skein modules: N
1) AT g=1, we have: Sk (M) = O (Lo, (M)

2) For q#1, we have that Sk (£xT) is a detormation—
guantizafion of the Afiyah—Bott—aGoldman Poisson bracket,

3) However, for generic g, and for M closed, we have:

Conjectured by Witten ~ "1,

dimd:( S\’{G (/V\)) < O proved in GTs1a,

4) We have a (3,2)=dimensional TQFT Sk Col,, — Ca¥g
M3 S SRG(M3> e \](c—\-c DM® = &
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Langlands duality for skein modules

o Expectafion: Sk (M) models a distinguished sector of 7—} (MY
the space of states for KapusTm —Witfen's twist of N-=4 4D SYM.

Heve, we have: OL, 'L‘ r\i/e @?

s Let 6 be a simple group and let 6= be ifs Langlands dual group.

v Conjecture: we have an equalify of infeger dimensions:

A, SR (M) = dum, Sk (M)
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Relatives/antecedents: A kS

Beilinson—Drinfeld 00's,

Arinkin—Gaitsgory '10s: I;A(OLI (LOCJ£(2)> = -/9"""00/ (B“"l@(i))

Frenkel, Gaitsgory, ~J » /np
Kapustin—Witten: @'Md (E\m G- ( i)) - 08—‘”'”( (B“V\G (< )>
Ben—2vi—Nadler: Zud (sh (Locseﬂ < )) ~ Sh (B“\"G( Z))

Mazur, Kapranov,

2eanikovs Kim: Arithmetic topology: number fields as 3—manitolds



Numerical evidence:

only very recently have any skein module dimensions been computed.
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Appearance of 1—torm symmetries:

o Nofe that PalL, is also a quotient, Paly = Sy /Z (sl ).

o This induces an acfion of z(sL) on sk, by 1—form symmetries,

» And induces an action of TL\(PGLN) on Sk

1

N

PGL,

by 1—form symmetries ,

¢+ While ordinary T-summetries ot a QFT allow inserfion along
codimension—one submanitolds..

v 1=torm symmetries of a QFT allow inserfion along codimension—1wa
submanitolds:
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Idea: compufe PGL,—skein modules as fwists ot SL —skein modules.



Skein description of fwists by 1—torm St{,mmew‘w
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Skein description of action/grading by 1—form symmedry:
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Bi—graded skein modules

s The center 1—torm symmetry induces fwisted skein modules, and each
fwisted skein module has a remaining grading:

. 3 sc)\/> (o‘)ra.du )
Sk (MY S Veck o aeHIMEE o
G ¢ / be Ho( M, 2(6)) (dwist)

Sk M) = D SR (M)

o The ftundamental group 1—=torm symmetry induces twisted skein
modules, and each fwisted skein modules has a remaining grading:

o - S HOM, T ) Lhmst )
SKGNA (M\ < \JQ—C'&C u/ ) ’_\ »d )
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0,b
Sk.Amy= & S\QGM\(/V\)
6 b
Theorem (67S): We have nafural isomorphisms:

a. b = ay
S\Q__Gsc CM3 - SRGOLO\ <M\



Back To Langlands duality:

Theorem (GTS): We have nafural isomorphisms:
atb

gh_ ;c CM3 — SRZOLO\ <MX

However, recall that s—/Langlands duality should exchange electric
and magnefic 1—form summetries, so it predicts instead:

Smmm) = S\QQI;ZLN(M\ (’5’ Shg: (M\)

Hence, To prove Langlands dualify in some case, we need o
compute ordinary G—skein modules in all degrees, plus all twisted
skein modules in degree zero,
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Twisted character variefies at g-

Recall That at g=1 we have Sstc(M) - 0(Log,_(M))

Likewise, at 4¢=1 we have S%i,:z (M) - O(Lo%dgc(M))fD H,(M,72)

A small but well—known miracle occurs: twisted character varieties
are (otten) smooth:
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Summary:
1) We expect skein modules compute a 'piece’ of fhe Kapustin—
Witten twist at generic parameters.,

2) This would suggest a Langlands duality between skein theories
for 6 and ifs Langlands dual,

3) We don't check this directly (we do not even propose an
isomorphismt), instead we compule dimensions independently,

4) For this we establish a natural compatibility with electric=magunetic
charges (1—torm symmedries) and conjecture compatibility with
Langlands dualify, We confirm this in some cases,

Further directions:
5) Intrinsic geomelric description of Hilbert space via "categorified
Donaldson—Thomas invariants (Gunningham—=Satronov)
) Value of A—model at =0, precise torm of classical Langlands
dualify for 3—manifolds??






