Non-rational $\hat{su}(2)$ cosets and Liouville field theory

Leszek Hadasz

Institute of Theoretical Physics
Jagiellonian University, Kraków, Poland

Results obtained in collaboration with Błażej Ruba

String Math 2022, University of Warsaw, Poland.

July 11-15, 2022
Lemma

A tensor product of the highest weight representations of the affine $\hat{\mathfrak{sl}}_2$ algebra: the Verma module $\mathcal{V}^{k,j}$ and $\mathcal{H}^{1,\epsilon} = \mathcal{V}^{1,\epsilon}/\text{rad } \mathcal{V}^{1,\epsilon}$ with $\epsilon = 0, \frac{1}{2}$, decomposes as:

$$\mathcal{V}^{k,j} \otimes \mathcal{H}^{1,\epsilon} \cong \bigoplus_{n \in \mathbb{Z}} \mathcal{V}^{k+1,j_n} \otimes \mathcal{V}^{c,\Delta_n},$$

where \mathcal{V}^{c,Δ_n} is the Virasoro Verma module.
\(\mathfrak{sl}_2 \) is a Lie algebra with basis \(\{ J^\pm_n, J^0_n \}_{n \in \mathbb{Z}} \cup \{ K \} \) and nonzero commutators

\[
\begin{align*}
[J^0_n, J^\pm_m] &= \pm J^\pm_{n+m}, & [J^+_n, J^-_m] &= 2J^0_{n+m} + n\delta_{n+m}K & [J^0_n, J^0_m] &= \frac{n}{2}\delta_{n+m}K.
\end{align*}
\]
\(\overset{\sim}{\mathfrak{l}}_2 \) is a Lie algebra with basis \(\{ J_n^{\pm}, J_n^0 \} \in \mathbb{Z} \cup \{ K \} \) and nonzero commutators

\[
\begin{align*}
[J_n^0, J_m^{\pm}] &= \pm J_{n+m}^{\pm}, \\
[J_n^+, J_m^-] &= 2J_{n+m}^0 \pm n\delta_{n+m}K \\
[J_n^0, J_m^0] &= \frac{n}{2} \delta_{n+m}K.
\end{align*}
\]

Let \(\overset{\sim}{\mathfrak{l}}_2^+ \) be the subalgebra of \(\overset{\sim}{\mathfrak{l}}_2 \) generated by \(J_0^+ \) and \(\{ J_n^a \} \in \mathbb{Z} \cup \{ K - k, J_0^0 - j \} \). The Verma module \(\mathcal{V}^{k,j} \) is the quotient of the universal enveloping algebra of \(\overset{\sim}{\mathfrak{l}}_2 \) by the left ideal generated by \(\overset{\sim}{\mathfrak{l}}_2^+ \cup \{ K - k, J_0^0 - j \} \). The image of 1 in \(\mathcal{V}^{k,j} \) is denoted by \(\nu_{k,j} \).
\(\widehat{\mathfrak{sl}}_2 \) is a Lie algebra with basis \(\{ J^\pm_n, J_0^n \}_{n \in \mathbb{Z}} \cup \{ K \} \) and nonzero commutators

\[
\begin{align*}
[J_n^0, J_m^\pm] &= \pm J_{n+m}^\pm, \\
[J_n^+, J_m^-] &= 2J_{n+m}^0 + n\delta_{n+m}K \\
[J_n^0, J_m^0] &= \frac{n}{2}\delta_{n+m}K.
\end{align*}
\]

Let \(\widehat{\mathfrak{sl}}_2^+ \) be the subalgebra of \(\widehat{\mathfrak{sl}}_2 \) generated by \(J_0^+ \) and \(\{ J_n^a \}_{n \geq 1} \).

Verma module \(\mathcal{V}^{k,j} \) is the quotient of the universal enveloping algebra of \(\widehat{\mathfrak{sl}}_2 \) by the left ideal generated by \(\widehat{\mathfrak{sl}}_2^+ \cup \{ K - k, J_0^0 - j \} \). The image of \(1 \) in \(\mathcal{V}^{k,j} \) is denoted by \(v_{k,j} \).

Every irreducible, highest weight module over \(\widehat{\mathfrak{sl}}_2 \) is isomorphic to some (unique) \(\mathcal{H}^{k,j} = \mathcal{V}^{k,j}/\text{rad}(\mathcal{V}^{k,j}) \), where \(\text{rad}(\mathcal{V}^{k,j}) \) is the union of all proper submodules of \(\mathcal{V}^{k,j} \).
\(\hat{\mathfrak{sl}}_2 \) is a Lie algebra with basis \(\{ J^\pm_n, J^0_n \}_{n \in \mathbb{Z}} \cup \{ K \} \) and nonzero commutators:

\[
[J^0_n, J^\pm_m] = \pm J^\pm_{n+m}, \quad [J^+_n, J^-_m] = 2J^0_{n+m} + n\delta_{n+m}K \quad [J^0_n, J^0_m] = \frac{n}{2}\delta_{n+m}K.
\]

Let \(\hat{\mathfrak{sl}}_2^+ \) be the subalgebra of \(\hat{\mathfrak{sl}}_2 \) generated by \(J^+_0 \) and \(\{ J^a_n \}_{n \geq 1} \).

Verma module \(\mathcal{V}^{k,j} \) is the quotient of the universal enveloping algebra of \(\hat{\mathfrak{sl}}_2 \) by the left ideal generated by \(\hat{\mathfrak{sl}}_2^+ \cup \{ K - k, J^0_0 - j \} \). The image of \(1 \) in \(\mathcal{V}^{k,j} \) is denoted by \(\nu^{k,j} \).

Every irreducible, highest weight module over \(\hat{\mathfrak{sl}}_2 \) is isomorphic to some (unique) \(\mathcal{H}^{k,j} = \mathcal{V}^{k,j} / \text{rad}(\mathcal{V}^{k,j}) \), where \(\text{rad}(\mathcal{V}^{k,j}) \) is the union of all proper submodules of \(\mathcal{V}^{k,j} \).

This explains \(\mathcal{V}^{k,j} \otimes \mathcal{H}^{1,\epsilon} \).
With the help of the local currents $J^a(z) = \sum_{n \in \mathbb{Z}} \frac{j_n^a}{z^{n+1}}$, one defines for $k \neq -2$ the Sugawara field:

$$T(z) = \frac{1}{k+2} \left(: J^0(z) J^0(z) : + \frac{1}{2} : J^+(z) J^-(z) : + \frac{1}{2} : J^-(z) J^+(z) : \right).$$
With the help of the local currents $J^a(z) = \sum_{n \in \mathbb{Z}} \frac{j_n^a}{z^{n+1}}$, one defines for $k \neq -2$ the Sugawara field:

$$T(z) = \frac{1}{k+2} \left(: J^0(z)J^0(z) : + \frac{1}{2} : J^+(z)J^-(z) : + \frac{1}{2} : J^-(z)J^+(z) :\right).$$

Its modes, defined as $T(z) = \sum_{n \in \mathbb{Z}} \frac{L_n}{z^{n+2}}$ generate the Virasoro algebra Vir with the central charge $c_k = \frac{3k}{k+2}$.
Withe the help of the local currents \(J^a(z) = \sum_{n \in \mathbb{Z}} \frac{j_n^a}{z^{n+1}} \), one defines for \(k \neq -2 \) the Sugawara field:

\[
T(z) = \frac{1}{k+2} \left(: J^0(z) J^0(z) : + \frac{1}{2} : J^+(z) J^-(z) : + \frac{1}{2} : J^-(z) J^+(z) : \right).
\]

Its modes, defined as \(T(z) = \sum_{n \in \mathbb{Z}} \frac{L_n}{z^{n+2}} \) generate the Virasoro algebra \(\text{Vir} \) with the central charge \(c_k = \frac{3k}{k+2} \).

Let \(\text{Vir}^+ \) be the subalgebra of \(\text{Vir} \) generated by \(\{L_n\}_{n \geq 1} \).

Verma module \(V^{c,\Delta} \) is the quotient of the universal enveloping algebra of \(\text{Vir} \) by the left ideal generated by \(\text{Vir}^+ \cup \{L_0 - \Delta\} \).
With the help of the local currents $J^a(z) = \sum_{n \in \mathbb{Z}} \frac{j^a_n}{z^{n+1}}$, one defines for $k \neq -2$ the Sugawara field:

$$T(z) = \frac{1}{k+2} \left(: J^0(z) J^0(z) : + \frac{1}{2} : J^+(z) J^-(z) : + \frac{1}{2} : J^-(z) J^+(z) : \right).$$

Its modes, defined as $T(z) = \sum_{n \in \mathbb{Z}} \frac{L_n}{z^{n+2}}$, generate the Virasoro algebra Vir with the central charge $c_k = \frac{3k}{k+2}$.

Let Vir$^+$ be the subalgebra of Vir generated by $\{L_n\}_{n \geq 1}$.

Verma module $V^{c,\Delta}$ is the quotient of the universal enveloping algebra of Vir by the left ideal generated by Vir$^+ \cup \{L_0 - \Delta\}$.

This (partially) explains $V^{k+1,j_n} \otimes V^{c,\Delta_n}$ in

$$V^{k,j} \otimes \mathcal{H}^{1,\epsilon} \cong \bigoplus_{n \in \mathbb{Z}} V^{k+1,j_n} \otimes V^{c,\Delta_n},$$
Let \mathfrak{f} be the Lie superalgebra spanned by odd $\{\psi_n^i, \bar{\psi}_n^i\}_{n \in \mathbb{Z} + \frac{1}{2}}$ and even I, with only nonzero superbrackets

$$[\psi_n^i, \bar{\psi}_m^j] = \delta_{n+m,0} \delta^{i,j} I.$$

The Fock space \mathcal{F} is defined as the quotient of $U\mathfrak{f}$ by the left ideal generated by $\{\psi_n^i, \bar{\psi}_n^i\}_{n > 0} \cup \{I - 1\}$. f_0 is the image of 1 in \mathcal{F} and $f_{\frac{1}{2}} = \bar{\psi}_{-\frac{1}{2}}^1 f_0$.
Let \mathfrak{f} be the Lie superalgebra spanned by odd $\{\psi^i_n, \overline{\psi}^i_n\}_{n \in \mathbb{Z} + \frac{1}{2}}$ and even I, with only nonzero superbrackets

$$[\psi^i_n, \overline{\psi}^j_m] = \delta_{n+m,0}\delta^{i,j}I.$$

The Fock space \mathcal{F} is defined as the quotient of $U\mathfrak{f}$ by the left ideal generated by $\{\psi^i_n, \overline{\psi}^i_n\}_{n > 0} \cup \{I - 1\}$. f_0 is the image of 1 in \mathcal{F} and $f_{1/2} = \overline{\psi}^{-1/2}f_0$.

\mathcal{F} is acted upon by local fields $\psi^i(z) = \sum_{n \in \mathbb{Z} + \frac{1}{2}} \frac{\psi^i_n}{z^{n+\frac{1}{2}}}$, $\overline{\psi}^i(z) = \sum_{n \in \mathbb{Z} + \frac{1}{2}} \frac{\overline{\psi}^i_n}{z^{n+\frac{1}{2}}}$.

Modes of the currents:

$$K^a(z) = \sum_{i,j=1}^{2} \tau_{i,j} : \overline{\psi}^i(z)\psi^j(z) :,$$

where $\tau^0 = \frac{1}{2}\sigma^3$, $\tau^\pm = \frac{1}{2} (\sigma^1 \pm i\sigma^2)$, satisfy the \widehat{sl}_2 algebra with $k = 1$.
Let \mathfrak{f} be the Lie superalgebra spanned by odd $\{\psi_n, \overline{\psi}_n\}_{n \in \mathbb{Z} + \frac{1}{2}}$ and even I, with only nonzero superbrackets

\[[\psi_n, \overline{\psi}_m] = \delta_{n+m,0} \delta^{i,j} I. \]

The Fock space \mathcal{F} is defined as the quotient of $U\mathfrak{f}$ by the left ideal generated by $\{\psi_n, \overline{\psi}_n\}_{n > 0} \cup \{I - 1\}$. f_0 is the image of 1 in \mathcal{F} and $f_{\frac{1}{2}} = \overline{\psi}_{-\frac{1}{2}} f_0$.

\mathcal{F} is acted upon by local fields $\psi^i(z) = \sum_{n \in \mathbb{Z} + \frac{1}{2}} \frac{\psi_n^i}{z^{n+\frac{1}{2}}}$, $\overline{\psi}^i(z) = \sum_{n \in \mathbb{Z} + \frac{1}{2}} \frac{\overline{\psi}_n^i}{z^{n+\frac{1}{2}}}$.

Modes of the currents:

\[K^a(z) = \sum_{i,j=1}^{2} \tau^a_{i,j} : \overline{\psi}^i(z) \psi^j(z) :, \]

where $\tau^0 = \frac{1}{2} \sigma^3$, $\tau^\pm = \frac{1}{2} (\sigma^1 \pm i \sigma^2)$, satisfy the \widehat{sl}_2 algebra with $k = 1$.
Let \mathfrak{f} be the Lie superalgebra spanned by odd $\{\psi^i_n, \overline{\psi}^i_n\}_{n \in \mathbb{Z} + \frac{1}{2}}$ and even I, with only nonzero superbrackets

$$[\psi^i_n, \overline{\psi}^j_m] = \delta_{n+m,0} \delta^{i,j} I.$$

The Fock space \mathcal{F} is defined as the quotient of $\mathbb{U}\mathfrak{f}$ by the left ideal generated by $\{\psi^i_n, \overline{\psi}^i_n\}_{n > 0} \cup \{I - 1\}$. f_0 is the image of 1 in \mathcal{F} and $f_{\frac{1}{2}} = \overline{\psi}^1_{-\frac{1}{2}} f_0$.

\mathcal{F} is acted upon by local fields $\psi^i(z) = \sum_{n \in \mathbb{Z} + \frac{1}{2}} \frac{\psi^i_n}{z^{n+\frac{1}{2}}}$, $\overline{\psi}^i(z) = \sum_{n \in \mathbb{Z} + \frac{1}{2}} \frac{\overline{\psi}^i_n}{z^{n+\frac{1}{2}}}$.

Modes of the currents:

$$K^a(z) = \sum_{i,j=1}^{2} \tau^a_{i,j} : \overline{\psi}^i(z) \psi^j(z) :,$$

where $\tau^0 = \frac{1}{2} \sigma^3$, $\tau^\pm = \frac{1}{2} (\sigma^1 \pm i \sigma^2)$, satisfy the $\hat{\mathfrak{sl}}_2$ algebra with $k = 1$.

Proposition

- $\hat{\mathfrak{sl}}_2$-submodule of \mathcal{F} generated by f_ϵ is isomorphic to $\mathcal{H}^{1,\epsilon}$.

Leszek Hadasz
Non-rational $\hat{\mathfrak{su}}(2)$ cosets and Liouville field theory
Fix $\kappa \neq 0$ and let \mathfrak{w} be the Lie algebra spanned by $a_n, \beta_n, \gamma_n, n \in \mathbb{Z}$, with commutators

$$[\gamma_m, \beta_n] = \delta_{m+n}l, \quad [a_m, a_n] = \frac{m}{2} \delta_{m+n}l.$$
Free fields: Wakimoto representation

- Fix $\kappa \neq 0$ and let \mathfrak{w} be the Lie algebra spanned by $a_n, \beta_n, \gamma_n, \ n \in \mathbb{Z}$, with commutators

$$[\gamma_m, \beta_n] = \delta_{m+n}l, \quad [a_m, a_n] = \frac{m}{2} \delta_{m+n}l.$$

- We define a \mathfrak{w}-module $\mathcal{W}^{\kappa,j}$ as the quotient of $U\mathfrak{w}$ by the left ideal generated by $\{a_0 - \kappa^{-1}j, l - 1\} \cup \{\beta_n, \gamma_{n+1}, a_{n+1}\}_{n=0}^{\infty}$. $\mathcal{W}^{\kappa,j}$ is an irreducible representation of \mathfrak{w}. Let $\mathfrak{w}_{\kappa,j}$ be the image of 1 in $\mathcal{W}^{\kappa,j}$.

Leszek Hadasz

Non-rational $\hat{su}(2)$ cosets and Liouville field theory
Fix $\kappa \neq 0$ and let \mathfrak{w} be the Lie algebra spanned by $a_n, \beta_n, \gamma_n, \ n \in \mathbb{Z}$, with commutators

$$[\gamma_m, \beta_n] = \delta_{m+n}I, \quad [a_m, a_n] = \frac{m}{2} \delta_{m+n}I.$$

We define a \mathfrak{w}-module $\mathcal{W}^{\kappa,j}$ as the quotient of $U\mathfrak{w}$ by the left ideal generated by $\{a_0 - \kappa^{-1}j, I - 1\} \cup \{\beta_n, \gamma_{n+1}, a_{n+1}\}_{n=0}^\infty$. $\mathcal{W}^{\kappa,j}$ is an irreducible representation of \mathfrak{w}. Let $\mathfrak{w}_{\kappa,j}$ be the image of 1 in $\mathcal{W}^{\kappa,j}$.

Using

$$\partial \phi(z) = \sum_{n \in \mathbb{Z}} \frac{a_n}{z^{n+1}}, \quad \beta(z) = \sum_{n \in \mathbb{Z}} \frac{\beta_n}{z^{n+1}}, \quad \gamma(z) = \sum_{n \in \mathbb{Z}} \frac{\gamma_n}{z^n}.$$

we define the $\hat{\mathfrak{sl}}_2$ currents with $k = \kappa^2 - 2$:

$$J^+(z) = \beta(z), \quad J^0(z) = :\gamma(z)\beta(z): + \kappa \partial \phi(z),$$
$$J^-(z) = - :\gamma(z)^2\beta(z): - 2\kappa \gamma(z) \partial \phi(z) - k \partial \gamma(z).$$
Fix $\kappa \neq 0$ and let \mathfrak{w} be the Lie algebra spanned by $a_n, \beta_n, \gamma_n, \ n \in \mathbb{Z}$, with commutators

$$[\gamma_m, \beta_n] = \delta_{m+n}I, \quad [a_m, a_n] = \frac{m}{2} \delta_{m+n}I.$$

We define a \mathfrak{w}-module $\mathcal{V}_{\kappa, j}$ as the quotient of $U\mathfrak{w}$ by the left ideal generated by $\{a_0 - \kappa^{-1}j, I - 1\} \cup \{\beta_n, \gamma_{n+1}, a_{n+1}\}_{n=0}^{\infty}$. $\mathcal{V}_{\kappa, j}$ is an irreducible representation of \mathfrak{w}. Let $\mathfrak{w}_{\kappa, j}$ be the image of 1 in $\mathcal{V}_{\kappa, j}$.

Using

$$\partial \phi(z) = \sum_{n \in \mathbb{Z}} \frac{a_n}{z^{n+1}}, \quad \beta(z) = \sum_{n \in \mathbb{Z}} \frac{\beta_n}{z^{n+1}}, \quad \gamma(z) = \sum_{n \in \mathbb{Z}} \frac{\gamma_n}{z^n}.$$

we define the \widehat{sl}_2 currents with $k = \kappa^2 - 2$:

$$J^+(z) = \beta(z), \quad J^0(z) =: \gamma(z) \beta(z) : + \kappa \partial \phi(z),$$

$$J^-(z) = - : \gamma(z)^2 \beta(z) : - 2 \kappa \gamma(z) \partial \phi(z) - k \partial \gamma(z).$$
Fix $\kappa \neq 0$ and let \mathfrak{w} be the Lie algebra spanned by a_n, β_n, γ_n, $n \in \mathbb{Z}$, with commutators

$$[\gamma_m, \beta_n] = \delta_{m+n} l, \quad [a_m, a_n] = \frac{m}{2} \delta_{m+n} l.$$

We define a \mathfrak{w}-module $\mathcal{W}^{\kappa, j}$ as the quotient of $U\mathfrak{w}$ by the left ideal generated by $\{a_0 - \kappa^{-1} j, l - 1\} \cup \{\beta_n, \gamma_{n+1}, a_{n+1}\}_{n=0}^\infty$. $\mathcal{W}^{\kappa, j}$ is an irreducible representation of \mathfrak{w}. Let $w^{\kappa, j}$ be the image of 1 in $\mathcal{W}^{\kappa, j}$.

Using

$$\partial \phi(z) = \sum_{n \in \mathbb{Z}} \frac{a_n}{z^{n+1}}, \quad \beta(z) = \sum_{n \in \mathbb{Z}} \frac{\beta_n}{z^{n+1}}, \quad \gamma(z) = \sum_{n \in \mathbb{Z}} \frac{\gamma_n}{z^n}.$$

we define the $\hat{\mathfrak{sl}}_2$ currents with $k = \kappa^2 - 2$:

$$J^+(z) = \beta(z), \quad J^0(z) = : \gamma(z) \beta(z) : + \kappa \partial \phi(z),$$

$$J^-(z) = - : \gamma(z)^2 \beta(z) : - 2 \kappa \gamma(z) \partial \phi(z) - k \partial \gamma(z).$$

Sugawara construction with the fields above gives:

$$T(z) = - : \beta(z) \partial \gamma(z) : + : \partial \phi(z) \partial \phi(z) : - \kappa^{-1} \partial^2 \phi(z).$$
- The \mathfrak{w}-module $\widetilde{\mathcal{W}}^{\kappa,j}$ is defined as the quotient of $U\mathfrak{w}$ by the left ideal generated by $\{a_0 + \kappa^{-1}(j + 1), l - 1\} \cup \{\beta_{n+1}, \gamma_n, a_{n+1}\}_{n=0}^{\infty}$. Let $\widetilde{w}_{\kappa,j}$ be the image of 1 in $\widetilde{\mathcal{W}}^{\kappa,j}$.

- Proposition: If (k, j) are such that $V^{k,j}$ is irreducible, then the $\hat{\mathfrak{sl}}_2$-module maps $s: V^{k,j} \to \mathcal{W}^{\kappa,j}$, $\tilde{s}: V^{k,j} \to \widetilde{\mathcal{W}}^{\kappa,j}$ determined by $s(v^{k,j}) = w^{\kappa,j}$ and $\tilde{s}(v^{k,j}) = \tilde{w}_{\kappa,j}$, respectively, are bijections.
The \(\mathfrak{w} \)-module \(\tilde{W}^{\kappa,j} \) is defined as the quotient of \(U\mathfrak{w} \) by the left ideal generated by \(\{a_0 + \kappa^{-1}(j + 1), I - 1\} \cup \{\beta_{n+1}, \gamma_n, a_{n+1}\}_{n=0}^\infty \). Let \(\tilde{w}_{\kappa,j} \) be the image of \(1 \) in \(\tilde{W}^{\kappa,j} \).

Fields \(J^a \) in \(\tilde{W}^{\kappa,j} \) are defined by

\[
J^+(z) = : \gamma(z)^2 \beta(z) : + 2\kappa \gamma(z) \partial \phi(z) + k \partial \gamma(z),
\]

\[
J^0(z) = - : \gamma(z) \beta(z) : - k \partial \phi(z), \quad J^-(z) = - \beta(z).
\]

This redefinition does not affect the formula for the Sugawara field.
- \mathfrak{w}-module $\tilde{\mathcal{W}}^{\kappa,j}$ is defined as the quotient of $U\mathfrak{w}$ by the left ideal generated by $\{a_0 + \kappa^{-1}(j + 1), l - 1\} \cup \{\beta_{n+1}, \gamma_n, a_{n+1}\}_{n=0}^\infty$. Let $\tilde{\mathcal{W}}_{\kappa,j}$ be the image of 1 in $\tilde{\mathcal{W}}^{\kappa,j}$.

- Fields J^a in $\tilde{\mathcal{W}}^{\kappa,j}$ are defined by

$$J^+(z) = \gamma(z)^2 \beta(z) : +2\kappa \gamma(z) \partial \phi(z) + k \partial \gamma(z),$$

$$J^0(z) = - : \gamma(z) \beta(z) : -\kappa \partial \phi(z),$$

$$J^-(z) = -\beta(z).$$

This redefinition does not affect the formula for the Sugawara field.
\[w \text{-module } \widetilde{W}^{\kappa,j} \text{ is defined as the quotient of } Uw \text{ by the left ideal generated by } \{a_0 + \kappa^{-1}(j + 1), l - 1\} \cup \{\beta_{n+1}, \gamma_n, a_{n+1}\}_{n=0}^\infty. \text{ Let } \widetilde{w}_{\kappa,j} \text{ be the image of } 1 \text{ in } \widetilde{W}^{\kappa,j}.

\text{Fields } J^a \text{ in } \widetilde{W}^{\kappa,j} \text{ are defined by}
\begin{align*}
J^+(z) &= : \gamma(z)^2 \beta(z) : + 2\kappa \gamma(z) \partial \phi(z) + k \partial \gamma(z), \\
J^0(z) &= - : \gamma(z) \beta(z) : - \kappa \partial \phi(z), \\
J^-(z) &= - \beta(z).
\end{align*}

This redefinition does not affect the formula for the Sugawara field.

Proposition

If \((k,j)\) are such that \(V^{k,j}\) is irreducible, then the \(\widehat{sl}_2\)-module maps
\[s : V^{k,j} \to W^{\kappa,j}, \quad \tilde{s} : V^{k,j} \to \widetilde{W}^{\kappa,j}, \]
determined by \(s(v_{k,j}) = w_{\kappa,j}\) and \(\tilde{s}(v_{k,j}) = \widetilde{w}_{\kappa,j}\), respectively, are bijections.
In the space $\otimes \mathcal{V}^{k,j,\epsilon} = \mathcal{V}^{k,j} \otimes \mathcal{H}^{1,\epsilon}$ we have two commuting sets of currents: $J^a(z)$ inherited from $\mathcal{V}^{k,j}$ and $K^a(z)$ inherited from $\mathcal{H}^{1,\epsilon}$. The combined currents

$$J^a(z) = J^a(z) + K^a(z) = \sum_{n \in \mathbb{Z}} \frac{\mathcal{J}^a_n}{z^{n+1}}$$

make $\otimes \mathcal{V}^{k,j,\epsilon}$ a representation of $\widehat{\mathfrak{sl}_2}$ at level $k + 1$.

Leszek Hadasz

Non-rational $\widehat{\mathfrak{su}}(2)$ cosets and Liouville field theory
In the space $\otimes V^{k,j,\epsilon} = V^{k,j} \otimes_{\overline{C}} \mathcal{H}^{1,\epsilon}$ we have two commuting sets of currents: $J^a(z)$ inherited from $V^{k,j}$ and $K^a(z)$ inherited from $\mathcal{H}^{1,\epsilon}$. The combined currents

$$J^a(z) = J^a(z) + K^a(z) = \sum_{n \in \mathbb{Z}} \frac{J_n^a}{z^{n+1}}$$

make $\otimes V^{k,j,\epsilon}$ a representation of \widehat{sl}_2 at level $k + 1$.

Let $k \not\in \{-2,-3\}$ and let T^J, T^K and T^J be the Sugawara fields constructed from the respective currents. Then

$$T^{Vir}(z) = T^J(z) + T^K(z) - T^J(z) = \sum_{n \in \mathbb{Z}} \frac{L^{Vir}_n}{z^{n+2}}.$$

is the Virasoro current with central charge $c^\otimes_k = c_k + c_1 - c_{k+1}$. It commutes with $J^a(z)$, hence $V^{k,j,\epsilon}$ is a representation of $\widehat{sl}_2 \oplus Vir$, where Vir is the Virasoro algebra spanned by L^{Vir}_n.
Tensor product: free field modules

Let $\mathcal{W}^{\kappa,j,\epsilon} = \mathcal{W}^{\kappa,j} \otimes_{\mathbb{C}} \mathcal{H}^{1,\epsilon}$ and $\widetilde{\mathcal{W}}^{\kappa,j,\epsilon} = \widetilde{\mathcal{W}}^{\kappa,j} \otimes_{\mathbb{C}} \mathcal{H}^{1,\epsilon}$.

Proposition $w_n^{\kappa,j,\epsilon}$ and $\widetilde{w}_n^{\kappa,j,\epsilon}$ are nonzero elements annihilated by $\{J_{a|n}, L_{\text{Vir}} n\}_{n > 0}$ and J_0 and J_{00}.
Tensor product: free field modules

Let $\otimes \mathcal{W}_{\kappa,j}^{\kappa,j}\otimes_{\mathbb{C}} \mathcal{H}^{1,\epsilon}$ and $\otimes \tilde{\mathcal{W}}_{\kappa,j}^{\kappa,j}\otimes_{\mathbb{C}} \mathcal{H}^{1,\epsilon}$.

Define

$$\sum_{n \in \mathbb{Z}} \frac{\rho_n}{z^{n+1}} = \rho(z) = -\gamma^2(z)K^+(z) + 2\gamma(z)K^0(z) + K^-(z) + \partial \gamma(z) \text{ in } \otimes \mathcal{W}_{\kappa,j}^{\kappa,j},$$

$$\sum_{n \in \mathbb{Z}} \frac{\tilde{\rho}_n}{z^{n+1}} = \tilde{\rho}(z) = -\gamma^2(z)K^-(z) + 2\gamma(z)K^0(z) + K^+(z) - \partial \gamma(z) \text{ in } \otimes \tilde{\mathcal{W}}_{\kappa,j}^{\kappa,j}.$$

and let for any $n \in \mathbb{N}$:

$$\mathcal{W}_{\kappa,j}^{\kappa,j} = \rho_{-2n-1} \cdots \rho_{-1}(w_{\kappa,j} \otimes f_\epsilon) \in \otimes \mathcal{W}_{\kappa,j}^{\kappa,j},$$

$$\tilde{\mathcal{W}}_{\kappa,j}^{\kappa,j} = \tilde{\rho}_{-2n-1} \cdots \tilde{\rho}_{-1}(\tilde{w}_{\kappa,j} \otimes f_\epsilon) \in \otimes \tilde{\mathcal{W}}_{\kappa,j}^{\kappa,j}.$$
Tensor product: free field modules

Let $\otimes \mathcal{W}^{\kappa,j,\epsilon} = \mathcal{W}^{\kappa,j} \otimes_{\mathbb{C}} \mathcal{H}^{1,\epsilon}$ and $\otimes \tilde{\mathcal{W}}^{\kappa,j,\epsilon} = \tilde{\mathcal{W}}^{\kappa,j} \otimes_{\mathbb{C}} \mathcal{H}^{1,\epsilon}$.

Define

$$\sum_{n \in \mathbb{Z}} \frac{\rho_n}{z^{n+1}} = \rho(z) = -\gamma^2(z)K^+(z) + 2\gamma(z)K^0(z) + K^-(z) + \partial \gamma(z) \quad \text{in} \quad \otimes \mathcal{W}^{\kappa,j,\epsilon},$$

$$\sum_{n \in \mathbb{Z}} \frac{\tilde{\rho}_n}{z^{n+1}} = \tilde{\rho}(z) = -\gamma^2(z)K^-(z) + 2\gamma(z)K^0(z) + K^+(z) - \partial \gamma(z) \quad \text{in} \quad \otimes \tilde{\mathcal{W}}^{\kappa,j,\epsilon}.$$

and let for any $n \in \mathbb{N}$:

$$w_n^{\kappa,j,\epsilon} = \rho_{-2n-1} \cdots \rho_{-1} w_{\kappa,j} \otimes f_{\epsilon} \in \otimes \mathcal{W}^{\kappa,j,\epsilon},$$

$$\tilde{w}_n^{\kappa,j,\epsilon} = \tilde{\rho}_{-2n-1} \cdots \tilde{\rho}_{-1} \tilde{w}_{\kappa,j} \otimes f_{\epsilon} \in \otimes \tilde{\mathcal{W}}^{\kappa,j,\epsilon}.$$

Proposition

\[w_n^{\kappa,j,\epsilon}, \tilde{w}_n^{\kappa,j,\epsilon}\] are nonzero elements annihilated by \(\{\mathcal{J}_n^a, L_n^{\text{Vir}}\}_{n>0}\) and \(\mathcal{J}_0^+\) and \(\mathcal{J}_0\)

\[
\begin{align*}
\mathcal{J}_0 w_n^{\kappa,j,\epsilon} &= (j + \epsilon - n) w_n^{\kappa,j,\epsilon}, \\
\mathcal{J}_0 \tilde{w}_n^{\kappa,j,\epsilon} &= (j + \epsilon + n) \tilde{w}_n^{\kappa,j,\epsilon}, \\
L_0^{\text{Vir}} w_n^{\kappa,j,\epsilon} &= (\Delta^{\otimes}_{k,j,\epsilon} + n^2) w_n^{\kappa,j,\epsilon}, \\
L_0^{\text{Vir}} \tilde{w}_n^{\kappa,j,\epsilon} &= (\Delta^{\otimes}_{k,j,\epsilon} + n^2) \tilde{w}_n^{\kappa,j,\epsilon},
\end{align*}
\]

where \(\Delta^{\otimes}_{k,j,\epsilon} = \Delta_{k,j} + \Delta_{1,\epsilon} - \Delta_{k+1,j+\epsilon}\).
Homomorphisms s, \tilde{s} induce maps

$$s : \bigotimes V^{k,j,\epsilon} \to \bigotimes V^{\kappa,j,\epsilon}, \quad \tilde{s} : \bigotimes V^{k,j,\epsilon} \to \bigotimes \tilde{V}^{\kappa,j,\epsilon}.$$

We have

Proposition

For every $\kappa \neq 0$, $n \in \mathbb{N}$ and $\epsilon \in \{0, \frac{1}{2}\}$ there exist polynomials $p^n_{\kappa,\epsilon}(j), \tilde{p}^n_{\kappa,\epsilon}(j)$ in j, unique up to scalars, such that

$$v^n_{\kappa,j,\epsilon} = p^n_{\kappa,\epsilon}(j)s^{-1}(w^n_{\kappa,j,\epsilon}), \quad \tilde{v}^n_{\kappa,j,\epsilon} = \tilde{p}^n_{\kappa,\epsilon}(j)\tilde{s}^{-1}(\tilde{w}^n_{\kappa,j,\epsilon})$$

are defined and nonzero for every $j \in \mathbb{C}$. These are highest weight vectors satisfying eigenvalue equations for J^0_0 and, if $k \neq -3$ so that T^{Vir} is defined, also eigenvalue equations for L^Vir_0.
Homomorphisms s, \tilde{s} induce maps

$$s : \otimes \mathcal{V}^{k,j,\epsilon} \rightarrow \otimes \mathcal{W}^{\kappa,j,\epsilon}, \quad \tilde{s} : \otimes \mathcal{V}^{k,j,\epsilon} \rightarrow \otimes \tilde{\mathcal{W}}^{\kappa,j,\epsilon}.$$

We have

Proposition

For every $\kappa \neq 0$, $n \in \mathbb{N}$ and $\epsilon \in \{0, \frac{1}{2}\}$ there exist polynomials $p^n_{\kappa,\epsilon}(j), \tilde{p}^n_{\kappa,\epsilon}(j)$ in j, unique up to scalars, such that

$$v^n_{\kappa,j,\epsilon} = p^n_{\kappa,\epsilon}(j)s^{-1}(w^n_{\kappa,j,\epsilon}), \quad \tilde{v}^n_{\kappa,j,\epsilon} = \tilde{p}^n_{\kappa,\epsilon}(j)s^{-1}(\tilde{w}^n_{\kappa,j,\epsilon})$$

are defined and nonzero for every $j \in \mathbb{C}$. These are highest weight vectors satisfying eigenvalue equations for J_0^0 and, if $k \neq -3$ so that T^Vir is defined, also eigenvalue equations for L_0^Vir.

One can write down the form of $p^n_{\kappa,\epsilon}(j)$ and $\tilde{p}^n_{\kappa,\epsilon}(j)$ explicitly. The calculation requires the knowledge of determinants of maps s and \tilde{s}, some information about the Wakimoto representation of the \hat{sl}_2 singular vectors and uses special properties of vectors $w^n_{\kappa,j,\epsilon}, \tilde{w}^n_{\kappa,j,\epsilon}$.
The relevant CFT-s

The CFT models with chiral symmetry given by $\hat{\mathfrak{sl}}_2$ are well known:

- the $\hat{\mathfrak{su}}(2)_k$ WZNW model, equivalent, under the general $G \leftrightarrow G^C/G$ duality, to the $H^+_3 = SL(2, \mathbb{C})/SU(2)$ coset model at the level $k' = -k$; the structure constants of the latter have been calculated by the conformal bootstrap method [Teschner];
The CFT models with chiral symmetry given by $\hat{\mathfrak{sl}}_2$ are well known:

- the $\hat{\mathfrak{su}}(2)_k$ WZNW model, equivalent, under the general $G \leftrightarrow G^C/G$ duality, to the $H^+_3 = \text{SL}(2, \mathbb{C})/\text{SU}(2)$ coset model at the level $k' = -k$; the structure constants of the latter have been calculated by the conformal bootstrap method [Teschner];

- its spectrum corresponds to non-unitary, infinite dimensional $\mathfrak{su}(2)$ representations with $j \in -\frac{1}{2} + i\mathbb{R}$;
The CFT models with chiral symmetry given by $\hat{\mathfrak{sl}}_2$ are well known:

- the $\hat{\mathfrak{su}}(2)_k$ WZNW model, equivalent, under the general $G \leftrightarrow G^C/G$ duality, to the $H_3^+ = SL(2, \mathbb{C})/SU(2)$ coset model at the level $k' = -k$; the structure constants of the latter have been calculated by the conformal bootstrap method [Teschner];
- its spectrum corresponds to non-unitary, infinite dimensional $\mathfrak{su}(2)$ representations with $j \in -\frac{1}{2} + i\mathbb{R}$;
- even if the $\hat{\mathfrak{su}}(2)_{k<2}$ structure constants do not admit an analytic continuation to the region $k > -2$, one can analytically continue the difference bootstrap equations and derive the structure constants of the “imaginary” $\hat{\mathfrak{su}}(2)$ WZNW model [Dabholkar, Pakman];
The relevant CFT-s

The CFT models with chiral symmetry given by \hat{sl}_2 are well known:

- the $\hat{su}(2)_k$ WZNW model, equivalent, under the general $G \leftrightarrow G^C/G$ duality, to the $H^+_3 = SL(2, \mathbb{C})/SU(2)$ coset model at the level $k' = -k$; the structure constants of the latter have been calculated by the conformal bootstrap method [Teschner];
- its spectrum corresponds to non-unitary, infinite dimensional $su(2)$ representations with $j \in -\frac{1}{2} + i\mathbb{R}$;
- even if the $\hat{su}(2)_k<_{-2}$ structure constants do not admit an analytic continuation to the region $k > -2$, one can analytically continue the difference bootstrap equations and derive the structure constants of the “imaginary” $\hat{su}(2)$ WZNW model [Dabholkar,Pakman];
- we also have full information about the Liouville field theory, with the symmetry algebra given by Vir.

Leszek Hadasz

Non-rational $\hat{su}(2)$ cosets and Liouville field theory
The CFT state–operator map

\[\otimes V^{k,j,\epsilon} \ni \nu_{\kappa,j,\epsilon} \mapsto \Phi(\nu_{\kappa,j,\epsilon}|z) \in \text{Hom}(\otimes V^{k,1,\epsilon}, \otimes V^{k,3,\epsilon}) \]

Leszek Hadasz
Non-rational $\widehat{su}(2)$ cosets and Liouville field theory
The CFT state–operator map

\begin{align*}
\otimes \mathcal{W}^{k,j,\epsilon} & \ni w_{k,j,\epsilon}^{n} \mapsto \Phi (w_{k,j,\epsilon}^{n} | z) \in \text{Hom}(\otimes \mathcal{W}^{k,j_1,\epsilon}, \otimes \mathcal{W}^{k,j_3,\epsilon}) \\
\uparrow
\otimes \mathcal{V}^{k,j,\epsilon} & \ni v_{k,j,\epsilon}^{n} \mapsto \Phi (v_{k,j,\epsilon}^{n} | z) \in \text{Hom}(\otimes \mathcal{V}^{k,j_1,\epsilon}, \otimes \mathcal{V}^{k,j_3,\epsilon}) \\
\downarrow
\otimes \tilde{\mathcal{W}}^{k,j,\epsilon} & \ni \tilde{w}_{k,j,\epsilon}^{n} \mapsto \Phi (\tilde{w}_{k,j,\epsilon}^{n} | z) \in \text{Hom}(\otimes \tilde{\mathcal{W}}^{k,j_1,\epsilon}, \otimes \tilde{\mathcal{W}}^{k,j_3,\epsilon})
\end{align*}
The CFT state–operator map

\[\otimes \mathcal{W}^{\kappa, j, \epsilon} \ni w_{\kappa, j, \epsilon} \mapsto \Phi \left(w_{\kappa, j, \epsilon} \bigg| z \right) \in \text{Hom}\left(\otimes \mathcal{W}^{k_1, \epsilon}, \otimes \mathcal{W}^{k_3, \epsilon} \right) \]

\[\uparrow \]

\[\otimes \mathcal{V}^{\kappa, j, \epsilon} \ni v_{\kappa, j, \epsilon} \mapsto \Phi \left(v_{\kappa, j, \epsilon} \bigg| z \right) \in \text{Hom}\left(\otimes \mathcal{V}^{k_1, \epsilon}, \otimes \mathcal{V}^{k_3, \epsilon} \right) \]

\[\downarrow \]

\[\otimes \widetilde{\mathcal{W}}^{\kappa, j, \epsilon} \ni \widetilde{w}_{\kappa, j, \epsilon} \mapsto \Phi \left(\widetilde{w}_{\kappa, j, \epsilon} \bigg| z \right) \in \text{Hom}\left(\otimes \widetilde{\mathcal{W}}^{k_1, \epsilon}, \otimes \widetilde{\mathcal{W}}^{k_3, \epsilon} \right) \]

- The \(\widehat{\mathfrak{su}}(2)_k \times \widehat{\mathfrak{su}}(2)_1 \) Ward identities allow to express correlation function of three \(\Phi \left(v_{\kappa, j, \epsilon} \big| z \right) \) fields as a product of the three-point conformal block \(\rho[\ldots] \) and structure constants of the models \(\widehat{\mathfrak{su}}(2)_k \times \widehat{\mathfrak{su}}(2)_1 \).
The CFT state–operator map

\[\otimes \mathcal{W}^{\kappa,j,\epsilon} \ni w^{n}_{\kappa,j,\epsilon} \mapsto \Phi (w^{n}_{\kappa,j,\epsilon} | z) \in \text{Hom}(\otimes \mathcal{W}^{k_{1},\epsilon}, \otimes \mathcal{W}^{k_{3},\epsilon}) \]

\[\uparrow \]

\[\otimes \mathcal{Y}^{k,j,\epsilon} \ni v^{n}_{\kappa,j,\epsilon} \mapsto \Phi (v^{n}_{\kappa,j,\epsilon} | z) \in \text{Hom}(\otimes \mathcal{Y}^{k_{1},\epsilon}, \otimes \mathcal{Y}^{k_{3},\epsilon}) \]

\[\downarrow \]

\[\otimes \tilde{\mathcal{W}}^{k,j,\epsilon} \ni \tilde{w}^{n}_{\kappa,j,\epsilon} \mapsto \Phi (\tilde{w}^{n}_{\kappa,j,\epsilon} | z) \in \text{Hom}(\otimes \tilde{\mathcal{W}}^{k_{1},\epsilon}, \otimes \tilde{\mathcal{W}}^{k_{3},\epsilon}) \]

- The \(\hat{su}(2)_{k} \times \hat{su}(2)_{1} \) Ward identities allow to express correlation function of three \(\Phi (v^{n}_{\kappa,j,\epsilon} | z) \) fields as a product of the three-point conformal block \(\rho[\ldots] \) and structure constants of the models \(\hat{su}(2)_{k} \times \hat{su}(2)_{1} \);

- one can compute explicitly the block \(\rho[\ldots] \) and check, that the correlation function of three \(\Phi (v^{n}_{\kappa,j,\epsilon} | z) \) fields is equal to the product of structure consultants of the \(\hat{su}(2)_{k+1} \times \text{Vir} \) model.
The equivalence

\[\hat{\mathfrak{su}}(2)_k \times \hat{\mathfrak{su}}(2)_1 \sim \hat{\mathfrak{su}}(2)_{k+1} \times \text{Vir} \]

is suggested by the GKO coset construction of the minimal models

\[V(1, m) \sim \frac{\hat{\mathfrak{su}}(2)_m \times \hat{\mathfrak{su}}(2)_1}{\hat{\mathfrak{su}}(2)_{m+1}}, \]
The equivalence
\[\hat{su}(2)_k \times \hat{su}(2)_1 \sim \hat{su}(2)_{k+1} \times \text{Vir} \]
is suggested by the GKO coset construction of the minimal models
\[V(1, m) \sim \frac{\hat{su}(2)_m \times \hat{su}(2)_1}{\hat{su}(2)_{m+1}} , \]
Since
\[SV(m) \times V(1) \sim \frac{\hat{su}(2)_m \times \hat{su}(2)_2}{\hat{su}(2)_{m+2}} \times \frac{\hat{su}(2)_1 \times \hat{su}(2)_1}{\hat{su}(2)_2} \]
\[V(m+1) \times V(m) \sim \frac{\hat{su}(2)_{m+1} \times \hat{su}(2)_1}{\hat{su}(2)_{m+2}} \times \frac{\hat{su}(2)_m \times \hat{su}(2)_1}{\hat{su}(2)_{m+1}} \]
then, if we relax the condition that \(m \) is an integer, then the formula
\[SVir \times V(1) \sim \text{Vir} \times \text{Vir}' \]
relating an \(N = 1 \) superconformal Liouville field theory (times a free fermion) to a pair of Liouville fields, is also expected (and holds).
There are different possible extensions of this results:

- One may expect that the continuous spectra generalization of the GKO construction will work for the $N=1$ supersymmetric case

$$\hat{su}(2)_k \times \hat{su}(2)_2 \sim N=1 \text{ super-Liouville} \times \hat{su}(2)_{k+2}.$$

and, more generally, for the general $\hat{su}(2)$ quotients involving the para-Liouville theories:

$$\hat{su}(2)_k \times \hat{su}(2)_p \sim \text{para-Liouville} \times \hat{su}(2)_{k+p}, \quad p > 2.$$
There are different possible extensions of this results:

- One may expect that the continuous spectra generalization of the GKO construction will work for the $N=1$ supersymmetric case

$$\hat{\mathfrak{su}}(2)_k \times \hat{\mathfrak{su}}(2)_2 \sim N=1 \text{ super-Liouville } \times \hat{\mathfrak{su}}(2)_{k+2}.$$

and, more generally, for the general $\hat{\mathfrak{su}}(2)$ quotients involving the para-Liouville theories:

$$\hat{\mathfrak{su}}(2)_k \times \hat{\mathfrak{su}}(2)_p \sim \text{para-Liouville } \times \hat{\mathfrak{su}}(2)_{k+p}, \ p > 2.$$

- One can try to find a similar relation for the Toda- and the para-Toda models, which are expected to arise as $\hat{\mathfrak{su}}(N), \ N > 2$ cosets.
There are different possible extensions of this results:

- One may expect that the continuous spectra generalization of the GKO construction will work for the $\mathbb{N}=1$ supersymmetric case

\[
\hat{su}(2)_k \times \hat{su}(2)_2 \sim \mathbb{N}=1 \text{ super-Liouville} \times \hat{su}(2)_{k+2}.
\]

and, more generally, for the general $\hat{su}(2)$ quotients involving the para-Liouville theories:

\[
\hat{su}(2)_k \times \hat{su}(2)_p \sim \text{para-Liouville} \times \hat{su}(2)_{k+p}, \quad p > 2.
\]

- One can try to find a similar relation for the Toda- and the para-Toda models, which are expected to arise as $\hat{su}(N), N > 2$ cosets.

- The findings may be interesting for the TFT$_3$/CFT$_2$ and AdS$_3$/CFT$_2$ relations.