DERIVING GAUGE-STRING DUALITY

Collaboration with: Matthias Gaberdiel Also P. Maity, B. Knighton, A. Dei, F. Bhat, R. Bharathkumar Rajesh Gopakumar, ICTS-TIFR, Bengaluru.

StringMath22 (Warsaw), I 5th Jul. 2022.

ROADMAP

What does it mean to derive AdS/CFT? Why is it important? Sketch of a Program ("'Esquisse d'un Programme"): From worldlines to worldsheets. • Proof of Concept - AdS_3/CFT_2 Correspondence in the tensionless limit: A) From Fields to Strings **B)** From Strings to Fields Looking Ahead (to $\mathcal{N} = 4$ Super Yang-Mills,)

DERIVING AdS/CFT

- How exactly do large N QFTs reorganise themselves into theories of strings? ['t Hooft -'74]
- D-brane physics indicates open-closed string duality as the underlying reason [Maldacena-'97].
- Holes close up and backreaction alters the background.
- But difficult to see this explicitly happen at large $g_s N = \lambda$.
- Therefore, cannot delineate scope of gauge-string duality beyond examples.

A DIFFERENT LAMP POST

- Shift focus to the corner where we understand the field theory but not necessarily the bulk.
- Look at $\lambda \to 0$ i.e. highly curved AdS or tensionless limit. Very stringy regime. [cf. Sundborg, Sezgin-Sundell, ...]

Dictionary:
$$R_{AdS} \propto \lambda^{\alpha}$$
; $g_s^2 \propto \frac{\lambda^2}{N^2}$.

- Finite number of holes to sum over at zero coupling. Well defined genus expansion.
- Interactions treated perturbatively (free correlators).

• Test cases: $(T^4)^N / S_N \leftrightarrow AdS_3$, Pert $\mathcal{N} = 4$ SYM $\leftrightarrow AdS_5$.

WHAT CONSTITUTES A DERIVATION?

$$\left\langle \mathcal{O}_{h_1}^{(w_1)}(x_1) \mathcal{O}_{h_2}^{(w_2)}(x_2) \dots \mathcal{O}_{h_n}^{(w_n)}(x_n) \right\rangle_{S^d} \bigg|_g =$$

- **Operational definition:** Relate (single trace) gauge invariant (euclidean) correlators to perturbative string amplitudes $-\forall (g, n)$.
- perturbative sigma model 2d CFT for the RHS. Mathematically well posed question.
- Can we make the equality manifest? Can we `tautologise' the correspondence?

 $= \int \left\langle \mathcal{V}_{h_1}^{w_1}(x_1; z_1) \mathcal{V}_{h_2}^{w_2}(x_2; z_2) \dots \mathcal{V}_{h_n}^{w_n}(x_n; z_n) \right\rangle_{\Sigma_{g,n}}$

Based on the dictionary between states: $\mathcal{O}_{h}^{(w)}(x) \leftrightarrow \mathcal{V}_{h}^{w}(x;z)$. (h = conformal dimension).

Both sides have autonomous definitions: as a fixed point for QFT on LHS and in terms of a

SKETCH OF A PROGRAM

BACK AND FORTH

$$\left\langle \mathcal{O}_{h_1}^{(w_1)}(x_1) \mathcal{O}_{h_2}^{(w_2)}(x_2) \dots \mathcal{O}_{h_n}^{(w_n)}(x_n) \right\rangle_{S^d} \bigg|_g = \int_{\mathcal{M}_{g,n}} \langle \mathcal{D}_{g,n} \rangle_{S^d}$$

An apparent asymmetry in this equality. Easier to go from RHS to LHS - Strings to Fields.

- To go from Fields to Strings (LHS to RHS), need to reconstruct a worldsheet integrand not unique.
- Nevertheless can have a canonical or natural form for the correlator on the RHS.

 $\mathcal{V}_{h_1}^{w_1}(x_1;z_1)\mathcal{V}_{h_2}^{w_2}(x_2;z_2)\ldots\mathcal{V}_{h_n}^{w_n}(x_n;z_n)\Big\rangle_{\Sigma_{a,n}}$

"From Free Fields to AdS" program to recast pert. QFT correlators into stringy correlators. [R.G. '03-'05].

BASIC IDEA: (Implicit) sum over distinct worldline topologies in Feynman diagrams for a large N theory = Sum over distinct worldsheets (moduli space) after gluing up double lines. Canonical prescription.

FROM WORLDLINES TO WORLDSHEETS

SLOGAN: EACH FEYNMAN GRAPH \leftrightarrow A CLOSED WORLDSHEET. Exploits the Strebel parametrisation of $\mathcal{M}_{g,n}$ [R.G.'05; cf. Kontsevich'91]. A refinement of 't Hooft's idea of associating a genus to double line Feynman graphs [R.G. '04].

STREBEL GRAPHS

- The Strebel differential foliates the Riemann surface into closed `horizontal trajectories': $\phi_S(z(t)) \left(\frac{dz(t)}{dt}\right)^2 > 0.$
- Disk domains (faces) each containing one of the n double poles $\{Z_i\}$.
- Separated by a critical graph connecting the zeroes $\{a_k\}$ the dual to the (skeleton) graph for the Feynman diagram.
- Strebel lengths $l_{km} = \int_{a_k}^{a_m} \sqrt{\phi_S(z)} dz \propto n_{km} = \# \text{ of Wick}$ contractions (Razamat'08) i.e. $\in \mathbb{Z}_+$.
- Correlators localised to discrete (integral) points on $\mathcal{M}_{g,n}$. Connection to Dessins d'enfant (Mulase-Penkava).

OPEN-CLOSED TRIPTYCH

I) Ribbon Graphs

2) Glued up Strips

3) Strebel Surface

PROOF OF CONCEPT

THE AdS_3/CFT_2 CORRESPONDENCE

• Tensionless limit of the AdS_3/CFT_2 correspondence makes much of this discussion very concrete and explicit - can carry through this program

$$\left\langle \sigma_{h_1}^{(w_1)}(x_1)\sigma_{h_2}^{(w_2)}(x_2)\dots\sigma_{h_n}^{(w_n)}(x_n)\right\rangle_{S^2}\Big|_g = \left| \mathcal{N}_{g_n}^{\mathcal{W}_1}(x_1;z_1)\mathcal{V}_{h_2}^{w_2}(x_2;z_2)\dots\mathcal{V}_{h_n}^{w_n}(x_n;z_n)\right\rangle_{\Sigma_{g,n}}$$

- CLAIM: String Theory on $AdS_3 \times S^3 \times T^4$ and k = 1 unit of NS-NS flux $\equiv Sym^N(T^4)$ free Symmetric Orbifold CFT as $N \to \infty$; $(g_s^2 \propto 1/N)$. [Eberhardt, Gaberdiel, R.G. - '18-'19].
- Will be able to go from LHS to RHS using the ideas sketched earlier (explicitly for large w_i).

Also go from RHS to LHS using unusual properties of the worldsheet CFT at k = 1.

A. FROM FIELDS TO STRINGS

ORBIFOLD CORRELATORS AND COVERINGS

- Implement the Fields to Strings program in our test case. $CFT_2 = (T^4)^K / S_K$; $(K \to \infty)$.
- Consider $\langle \sigma^{(w_1)}(x_1) \sigma^{(w_2)}(x_2) \dots \sigma^{(w_n)}(x_n) \rangle_{S^2}$ ground states of w-cycle twisted sector.
- Lunin-Mathur['00] : compute by going to covering space.
- Vacuum path integral ($\sigma^{(w)}(x) \rightarrow 1$) of single copy of T^4 CFT.
- Locally, $x = \Gamma(z)$ with branching w_i at insertions z_i : $x \sim x_i + a_i^{\Gamma}(z - z_i)^{w_i}$. Globally, rigid problem: z_i fixed by (x_i, w_i) .
- Coordinate dependence comes from pullback $\partial \Gamma(z)$ and Liouville action. Weight $\propto e^{-S_L[\ln|\partial\Gamma|^2]}$. $S_L[\Phi] = \frac{c}{48\pi} \int d^2 z [2\partial\Phi\bar{\partial}\Phi + R\Phi]$.

FEYNMAN COVERINGS

- Can associate a free field like Feynman diagram with each contribution to symm. orbifold correlators.
- Bifundamental like double line graph pullback of Jordan curve on spacetime S^2 .
- $2w_i$ edges coming out of vertices $z_i = \Gamma^{-1}(x_i)$.
- N preimages of $x = \infty$ (poles of $\Gamma(z)$) in the coloured loops. $(N = 1 + \sum_{i=1}^{n} \frac{w_i 1}{2}$, Riemann-Hurwitz)
- Graph triangulates the covering space = worldsheet.
- Each covering map from a distinct point on the moduli space.

[Pakman-Rastelli-Razamat-'09]

COVERING MAPS & A MATRIX MODEL

Covering maps are hard to explicitly write down - even for genus zero. $\Gamma(z) = \frac{p_N(z)}{q_N(z)} = \frac{p_N(z)}{\prod_{a=1}^{N} (z - \lambda_a)} \Rightarrow \quad \partial \Gamma(z) = M_{\Gamma} \frac{\prod_{i=1}^{n-1} (z - z_i)^{w_i - 1}}{\prod_{a=1}^{N} (z - \lambda_a)^2}$ [Roumpedakis -'18] • Requiring no simple pole at $z = \lambda_a \Rightarrow \sum_{i=1}^{n-1} \frac{w_i - 1}{\lambda_a - z_i} = \sum_{b \neq a}^{N} \frac{2}{\lambda_a - \lambda_b}$, (a = 1, ..., N).

Simplification at large N. Saddle point of a Penner-like matrix model with potential $W(z) = \sum_{i=1}^{n-1} \alpha_i \log (z - z_i). \text{ Introduce } \rho(\lambda) = \frac{1}{N} \sum_{i=1}^{N} \delta(\lambda - \lambda_a). \text{ Resolvent } u(z) = \sum_{i=1}^{N} \frac{1}{z - \lambda_i}$ $\sum_{a=1}^{n} z - \lambda_a$ $(\alpha_i = \frac{W_i}{N})$ i=1a=1[Gaberdiel-R.G.-Knighton-Maity - '20]

MATRIX MODEL & FEYNMAN DIAGRAMS

- determines 'eigenvalue density' of poles λ_a in coloured loops.
- Coalesces into cuts transverse to the edges. Forms the dual to the skeleton graph to the original graph.

$$y_0^2(z) = \frac{Q_{2n-4}(z)}{\prod_{i=1}^{n-1} (z-z_i)^2} = \frac{\alpha_n^2 dz^2}{\prod_{i=1}^n (z-z_i)^2} \prod_{k=1}^{2n-4} (z-z_i)^2 \prod_{k=1}^{2n-4} (z-z_i)^2 \sum_{k=1}^{2n-4} (z-z_i)^2 \prod_{k=1}^{2n-4} (z-z_i)^2 \prod_{k=1$$

Periods=`Filling fractions':

$$\frac{1}{2\pi i} \oint_{A_l} y_0(z) dz \equiv \nu_l = \frac{n^{(l)}}{N}, \quad \frac{1}{2\pi i} \oint_{B_l} y_0(z) dz \equiv \mu_l = \frac{\tilde{n}^{(l)}}{N}$$

• The solution of the large N matrix model encoded in a spectral curve $y_0(z) = W'(z) - 2u(z)$

 $-a_k$

- The spectral curve differential is a Strebel differential! $\phi_S(z)dz^2 = -y_0^2(z)dz^2$.
- (2n-6) real periods $\sim \frac{n_{ij}}{N}$ take arbitrary real values (as $N \to \infty$) and parametrise the solution to the covering maps. But now see that it (Strebel) parametrises the (arithmetic) points on $\mathcal{M}_{0,n}$.
- As $N \to \infty$, the sum goes over to an integral over moduli space $\mathcal{M}_{0,n}$.
- Realises the program of associating Feynman diagrams to points in moduli space (via Strebel).
- Integrand on moduli space $\propto e^{-N^2 S_{cl}[\Gamma]}$. With $S_{cl}[\Gamma]$

•
$$S[\Gamma] = \frac{\Gamma'''}{\Gamma'} - \frac{3}{2} \left(\frac{\Gamma''}{\Gamma'}\right)^2$$
 - the Schwarzian of the coveri

STREBEL APPEARS!

$$[\Gamma] \propto \int d^2 z |S[\Gamma]|. \text{ (From Liouville action)}$$

ing map - also equals $\phi_S(z)$ at large N!

B. FROM STRINGS TO FIELDS

TENSIONLESS STRINGS ON AdS3

- Novel features of the worldsheet theory in the tensionless limit: I. Free field (GLSM) description $[\mathfrak{psu}(1,1|2)_1]$ despite being highly curved AdS_3 - like $\mathfrak{su}(2)_1$. 2. In terms of holomorphic twistor variables: 2 symplectic bosons (ξ^{\pm}) and 2 fermions (+ conjugates). 3. Spectrally flowed sectors $\{w_i\}$ of the WZW model \leftrightarrow twisted sectors $\{w_i\}$ of dual orbifold CFT. 4. Worldsheet correlators of these sectors are delta function localised to discrete points on $\mathcal{M}_{g,n}$.
- 5. Semiclassical worldsheet which is essentially at the boundary of AdS_3 gives Lunin-Mathur correlators.

FROM STRINGS TO FIELDS: SPECTRUM

The entire (not just BPS) spectrum of the perturbative string theory exactly matches with the (single cycle) states of the large N 2d orbifold CFT. [Eberhardt, Gaberdiel, R.G. -'18]

$$\mathscr{V}_{h}^{w}(x;z) \quad \longleftrightarrow \quad \mathscr{O}_{h}^{(w)}(x)$$

- $h = \text{spacetime conformal dimension} = AdS_3 \text{ energy. } w = \text{twisted sector cycle} = \text{spectral flow.}$
- The bulk theory with k = 1 has fewer states than for k > 1. No continuum of long strings.
- Only j = 1/2 multiplets under $\mathfrak{S}l_2(\mathbb{R})$ due to truncation in $\mathfrak{PSU}(1,1|2)_1$ WZW model.
- Only four transverse oscillators (T^4) ; Quasi-topological on $AdS_3 \times S^3$.

FROM STRINGS TO FIELDS: CORRELATORS

$$\left\langle \sigma^{(w_1)}(x_1) \sigma^{(w_2)}(x_2) \dots \sigma^{(w_n)}(x_n) \right\rangle_{S^2} \bigg|_{g=0} = \int_{\mathcal{M}_{0,n}} \left\langle \mathcal{V}_0^{w_1}(x_1;z_1) \mathcal{V}_0^{w_2}(x_2;z_2) \dots \mathcal{V}_0^{w_n}(x_n;z_n) \right\rangle_{\Sigma_{0,n}}$$

- agrees with LHS. (See generalisation to BPS and other states Gaberdiel-Nairz '22)
- $x = \Gamma(z)$ with branching w_i at insertions z_i : $x \sim x_i + a_i^{\Gamma}(z z_i)^{w_i}$; (i = 1, 2, ..., n).
- i=4

Restrict to ground states in w-twisted sectors; and genus zero - for simplicity. RHS nontrivially

Because of unusual localisation of worldsheet correlators on moduli space - to holomorphic maps [Cf. Eberhardt @StringMath21]

• CLAIM: Worldsheet correlator on RHS $\propto \int \delta^{(2)}(x_i - \Gamma(z_i))$ - discrete set of points allowing covers. [Eberhardt-Gaberdiel-R.G. -'19]

Exact semiclassical worldsheet sigma model action gives weight $\propto e^{-S_L[\Phi=\ln|\partial\Gamma|^2]}$, $\Phi =$ radial coord.

TWISTORS & LOCALISATION

Thus worldsheet is a covering space of the boundary S^2 exactly as in Lunin-Mathur.

This localisation is transparent in a free field realisation of $p_{SU}(1,1|2)_1$ - twistor variables $Z^{I} = (\xi^{\alpha}, \psi^{\alpha}); Y_{I} = (\epsilon_{\alpha\beta}\eta^{\beta}, \epsilon_{\alpha\beta}\chi^{\beta}).$ [Dei, Gaberdiel R.G., Knighton- '20]

Twistor incidence relation: $\langle (\xi^{-}(z) + \Gamma(z)\xi^{+}(z)) \rangle_{phys} = 0$

Implies that correlators are $\propto \sum \hat{W}_{\Gamma} \prod_{i=1}^{n} |a_i^{\Gamma}|^{-2h_i} \prod_{i=1}^{n} \delta^{(2)}(x_i - \Gamma(z_i))$ i=1i=4

LOGIC FLOWCHART

LOOKING AHEAD

TENSIONLESS STRINGS ON AdS5

Ambitwistor Open String Theory (Y_I, Z^I) [Berkovits'04; Mason-Skinner' 13....]

Twistorial Gauged Linear Sigma Model for $AdS_3 \times S^3$: $Y_I = (\eta_{\alpha}, \chi_{\beta}); Z^I = (\xi^{\alpha}, \psi^{\beta}).$

Twistorial Gauged Linear Sigma Model for $AdS_5 \times S^5$: $Y_I = (\mu_{\alpha}^{\dagger}, \lambda_{\dot{\alpha}}^{\dagger}, \psi_a^{\dagger}); \ Z^I = (\lambda^{\alpha}, \mu^{\dot{\alpha}}, \psi^{a}).$ [Gaberdiel-R. G. '21]

BMN & Integrable Spin Chains [Berenstein-Maldacena-Nastase '02,....]

FREE FIELDS ON THE WORLDSHEET

- Twistor fields $Z^{I} = (\lambda^{\alpha}, \mu^{\beta}, \psi^{\alpha}); Y_{J} = (\lambda^{\dagger}_{\alpha}, \mu^{\dagger}_{\beta}, \psi^{\dagger}_{b})$ give a free field representation of $\mathfrak{psu}(2,2|4)$, through bilinears $Y_I Z^J$ (with $\mathscr{C} \equiv Y^I Z_I = 0$ - projects out the $\mathfrak{u}(1)$).
- $(\mu_{\alpha}^{\dagger})_r$, $(\mu^{\dot{\alpha}})_r$, $(\psi_a^{\dagger})_r$ (a = 1, 2), ψ_r^b (b = 3, 4), with $-\frac{w-1}{2} \le r \le \frac{w-1}{2}$
- $|0\rangle_{w}$ is a "spectrally flowed" vacuum state.
- $w = 0 \leftrightarrow NS$ sector, $w = 1 \leftrightarrow Ramond$ sector: only zero modes. These generate the singleton representation of the 4d superconformal algebra psu(2,2|4).

For each $w \in \mathbb{Z}_+$ consider Fock space built on $|0\rangle_w$ by a finite number of "wedge modes":

PHYSICAL GAUGE AND SPECTRUM

- Further, impose residual physical state conditions
- Condition $A \leftrightarrow$ discrete translation invariance on a worldsheet with w bits (cyclicity).

• Condition $B \leftrightarrow Each$ of the individual bits at each "site" form a singleton.

PROPOSAL: In a "physical gauge" can gauge away out-of-the-wedge modes leaving only the wedge modes Z_r^I , $(Y_I)_r$ (with $-\frac{(w-1)}{2} \le r \le \frac{(w-1)}{2}$) - left with w bits. Underlying worldsheet $\mathcal{N} = 4$? [Gaberdiel-R.G. '21]

A) $(L_0 + pw) | phys \rangle_w = 0$ $(p \in \mathbb{Z})$

B) $\mathscr{C}_{r} | phys \rangle_{w} = 0 \quad (r = 0, 1, ..., (w - 1))$ $[\mathscr{C} = Z^I Y_I]$

FREE $\mathcal{N} = 4$ SYM FROM THE WORLDSHEET

- Reproduces precisely the large N gauge invariant spectrum of single trace operators (*w* letters) in $\mathcal{N} = 4$ SYM : $\sum_{w} (singleton)^{\otimes w} / (cyclicity). \qquad [w = 0 \leftrightarrow 1 \text{ (identity operator in SYM]}$ [Bianchi Morales Samtleben: Alday David Gava Narain]
- ^{*w*} [Bianchi, Morales, Samtleben; Alday, David, Gava, Narain] Singleton (*w* = 1) \leftrightarrow single "letters" of SYM { $\partial^{s}\phi^{i}$, $\partial^{s}\Psi^{a}_{\alpha}$, $\partial^{s}\bar{\Psi}^{\dot{\alpha}}_{\alpha}$, $\partial^{s}\bar{\mathcal{F}}^{\dot{\alpha}\dot{\beta}}$ }.
- Gives an organisation of the free SYM spectrum in terms of w bits same building blocks of the integrable spin chains that govern the dynamics of perturbative SYM [Minahan-Zarembo; Beisert, Staudacher et.al].
- Need worldsheet quantisation that reproduces these physical modes and residual constraints.
- Expect a localisation of correlators to holomorphic maps into ambitwistor space. $S[\Gamma] \propto \phi_s \Rightarrow e^{-2\pi A_s} \propto \left(\frac{1}{x_{ij}^2}\right)^{n}$
 - Feynman Propagators! [Bhat, Maity, R. G., Radhakrishnan '22]

[Gaberdiel, R. G. (In progress)]

- QFTs into string theories can be explicitly carried out.
- Could also close the circle from strings to fields due to a tractable worldsheet theory.
- Extension to perturbative $\mathcal{N} = 4$ SYM in terms of twistor description of AdS₅. Compelling ingredients for worldsheet theory but needs to be put on solid footing.
 - [R.G.-Mazenc '22, in progress].
- Interesting connections to Mathematics.

OUTLOOK

Exhibited a test case (tensionless AdS_3/CFT_2) where the general program of reassembling large N

Extend "Fields to Strings" program to other large N QFTs. E.g. string duals to large N Matrix models

Tensionless string theories on AdS likely to give a new, unusual family of topological string theories.

THANKYOU