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Symmetry in QFT

Motivating idea for this talk:

Separate out the abstract structure of symmetry
from its concrete manifestations as actions

or representations



Symmetry in QFT is a big topic; the framework discussed here only scratches the surface

The framework we present applies to finite symmetries, analogous to finite group symmetry

It includes finite “homotopical symmetries”, such as higher groups, 2-groups, . . .

Our framework makes clear the topological character of symmetry, we exhibit some
phenomena that can occur, and we review a bit of recent work from this viewpoint

Details appear in lecture notes on the collaboration website and in a forthcoming paper

Many current results about extended notions of symmetry in QFT: Apruzzi, Bah, Benini,
Bhardwaj, Bonetti, Bullimore, Córdova, Choi, Cvetič, Del Zotto, Dumitrescu, Gaiotto,
Garćıa Etxebarria, Gould, Gukov, Heckman, Heidenreich, Hopkins, Hosseini, Hsin, Hübner,
Intriligator, Ji, Jian, Johnson-Freyd, Jordan, Kaidi, Kapustin, Komargodski, Lake, Lam,
McNamara, Minasian, Montero, Ohmari, Pantev, Pei, Plavnik, Reece, Robbins,
Roumpedakis, Rudelius, Schäfer-Nameki, Scheimbauer, Seiberg, Seifnashri, Shao, Sharpe,
Tachikawa, Thorngren, Torres, Vandermeulen, Wang, Wen, Willett, . . . , . . . , . . .
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Garćıa Etxebarria, Gould, Gukov, Heckman, Heidenreich, Hopkins, Hosseini, Hsin, Hübner,
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Bhardwaj, Bonetti, Bullimore, Córdova, Choi, Cvetič, Del Zotto, Dumitrescu, Gaiotto,
Garćıa Etxebarria, Gould, Gukov, Heckman, Heidenreich, Hopkins, Hosseini, Hsin, Hübner,
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Motivation: algebras

Abstract symmetry data (for algebras) is a pair pA,Rq:

A algebra

R right regular module

Definition: Let V be a vector space. An pA,Rq-action on V is a pair pL, ✓q consisting of a
left A-module L together with an isomorphism of vector spaces

✓ : R bA L
–››Ñ V

R allows us to recover the vector space underlying L—a bit pedantic here; crucial later

Elements of A act on all modules; relations in A apply (e.g. Casimirs in Upgq)

Analogy:
algebra „„„B topological field theory

element of algebra „„„B defect in TFT
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Example: Let G be a finite group. Its group algebra is

CrGs “
#

ÿ

gPG
�g g

+
, �g P C

Identify CrGs “ FunpGq; convolution product is pushforward under

mult : G ˆ G ›Ñ G

Higher Example: Vect “ category of finite dimensional complex vector spaces. Define
VectrGs as the linear category (Vect-module) of vector bundles over G
with tensor product pushforward under mult. It is a fusion category
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Quotients: augmentations

Definition: An augmentation of an algebra A is an algebra homomorphism ✏ : A Ñ C.

Use ✏ to give a right A-module structure to C: � ¨ a “ �✏paq, � P C

Example: A “ CrGs: ✏ : CrGs ›Ñ C
ÿ

gPG
�gg fi›Ñ

ÿ

gPG
�g

The “quotient” of a left A-module L is the vector space

Q “ C bA L “ C b✏ L

Example: A “ CrGs, S a finite G-set, L “ CxSy: then Q “ C bA CxSy – CxS{Gy

Augmentations for higher algebras: � tensor category ✏ : � Ñ Vect fiber functor
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Projective symmetries

Quantum theory is projective, not linear : pure states form a projective space

The “projectivity” of a theory is encoded in an (’t Hooft) anomaly

Symmetries are also projective—in our present context the algebra A includes projectivity

Example: Projective representation of G is linear represention of G
⌧
in a central extension

1 ›Ñ Cˆ ›Ñ G
⌧ ›Ñ G ›Ñ 1

Isomorphism class of extension r⌧ s P H
2pG;Cˆq Module over twisted group algebra:

A
⌧ “

à

gPG
L
⌧
g

An augmentation ✏ : A
⌧ Ñ C splits the extension, so does not exist if r⌧ s ‰ 0
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Field theory

Analogy: field theory „ module over an algebra OR „ representation of a Lie group

Warning: This analogy is quite limited

Segal Axiom System: A (Wick-rotated) field theory F is a linear representation of a

bordism (multi)category BordnpFq

n dimension of spacetime

F background fields (orientation, Riemannian metric, . . . )

Fully local theory for topological theories; full locality in principle for general theories

Kontsevich-Segal: Axioms for 2-tier nontopological theory F : Bordxn´1,nypFq Ñ tVect



Field theory

Analogy: field theory „ module over an algebra OR „ representation of a Lie group

Warning: This analogy is quite limited

Segal Axiom System: A (Wick-rotated) field theory F is a linear representation of a

bordism (multi)category BordnpFq

n dimension of spacetime

F background fields (orientation, Riemannian metric, . . . )

Fully local theory for topological theories; full locality in principle for general theories

Kontsevich-Segal: Axioms for 2-tier nontopological theory F : Bordxn´1,nypFq Ñ tVect

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Field theory

Analogy: field theory „ module over an algebra OR „ representation of a Lie group

Warning: This analogy is quite limited

Segal Axiom System: A (Wick-rotated) field theory F is a linear representation of a

bordism (multi)category BordnpFq

n dimension of spacetime

F background fields (orientation, Riemannian metric, . . . )

Fully local theory for topological theories; full locality in principle for general theories

Kontsevich-Segal: Axioms for 2-tier nontopological theory F : Bordxn´1,nypFq Ñ tVect



Field theory

Analogy: field theory „ module over an algebra OR „ representation of a Lie group

Warning: This analogy is quite limited

Segal Axiom System: A (Wick-rotated) field theory F is a linear representation of a

bordism (multi)category BordnpFq

n dimension of spacetime

F background fields (orientation, Riemannian metric, . . . )

Fully local theory for topological theories; full locality in principle for general theories

Kontsevich-Segal: Axioms for 2-tier nontopological theory F : Bordxn´1,nypFq Ñ tVect



Domain walls, boundary theories, defects

�,�1,�2 pn ` 1q-dimensional theories

� : �1 Ñ �2 domain wall

⇢ : � Ñ right boundary theory

rF : Ñ � left boundary theory

The “sandwich” ⇢ b�
rF is an (absolute) n-dimensional theory

More generally, one can put defects on any (stratified) manifold D Ä M
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Composition laws; invertibility

‚ Given two field theories F1, F2 on the same domain BordnpFq, there is a composition

F1 b F2. The composition law is sometimes called stacking. There is a unit for the

composition law

‚ There is also a composition law on parallel defects, for example the OPE on point

defects. In a topological theory one obtains a higher algebra of defects.

So a notion of invertible field theory and invertible defect
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‚ Given two field theories F1, F2 on the same domain BordnpFq, there is a composition

F1 b F2. The composition law is sometimes called stacking. There is a unit for the

composition law

‚ There is also a composition law on parallel defects, for example the OPE on point

defects. In a topological theory one obtains a higher algebra of defects.

So a notion of invertible field theory and invertible defect



Main definition: abstract symmetry data

Fix a dimension n and background fields F (which we keep implicit)

Definition: Finite field-theoretic symmetry data of dimension n is a pair p�, ⇢q in which
� is an pn ` 1q-dimensional topological field theory and ⇢ is a topological
right �-module.

Example: Let G be a finite group. Then for a G-symmetry we let � be finite gauge
theory in dimension n`1. Note this is the quantum theory which sums over
principal G-bundles

Regular ⇢: Suppose C1 is a symmetric monoidal n-category and � is an pn ` 1q-
dimensional topological field theory with codomain C “ AlgpC1q. Let
A “ �pptq. Then A is an algebra in C1 which, as an object in C, is pn`1q-
dualizable. Assume that the right regular module AA is n-dualizable as a

1-morphism in C. Then the boundary theory ⇢ determined by AA is the
right regular boundary theory of �, or the right regular �-module.

A regular boundary theory is also called Dirichlet
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Main definition: concrete realization of symmetry

Let � be an pn ` 1q-dimensional topological field theory and let ⇢ be a right �-module.

Definition: A p�, ⇢q-module structure on an n-dimensional field theory F is a pair p rF , ✓q
in which rF is a left �-module and ✓ is an isomorphism

✓ : ⇢ b�
rF –››Ñ F

of absolute n-dimensional theories.

‚ The theory F and so the boundary theory rF may be topological or nontopological

‚ The sandwich picture of F as ⇢ b�
rF separates out the topological part p�, ⇢q of the

theory from the potentially nontopological part rF of the theory.

‚ Symmetry persists under renormalization group flow, hence a low energy
approximation to F should also be an p�, ⇢q-module. If F is gapped, thenwe can bring
to bear powerful methods and theorems in topological field theory to investigate
topological left �-modules. This leads to dynamical predictions
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Example: quantum mechanics with G-symmetry

n “ 1

F {orientation, Riemannian metric} for F and rF
H Hilbert space

H Hamiltonian

G

ö

H finite group

S : G Ñ AutpHq action on H

�pptq CrGs
F pptq H

rF pptq CrGsH (left module)

Evaluation of some bordisms: (a) the left module CrGsH

(b) e
´⌧H{~

: CrGsH ›Ñ CrGsH

(c) the central function g fi›Ñ Tr
H

`
Spgqe´⌧H{~˘

on G
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Example: gauge theory with BA-symmetry

n any dimension

A finite abelian group A “ /µ
2

BA a homotopical/shifted A (“1-form A-symmetry”)

H Lie group with A Ä ZpHq H “ SU2

H “ H{A H “ SO3

F H-gauge theory

rF H-gauge theory

A quotient construction allows to recover absolute H-gauge theory as a sandwich (later)
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Defects: quantum mechanics

n “ 1

H Hilbert space

H Hamiltonian

G

ö

H finite group

Consider a point defect in F . The link of a point in a 1-manifold (imaginary time) is S
0
, a

0-sphere of radius ✏, and the vector space of defects is

lim–›
✏Ñ0

Hom
`
1, F pS0

✏ q
˘

which is a space of singular operators on H. To focus on formal aspects we write ‘EndpHq’

We mow consider defects in p⇢,�, rF q which transport to point defects in F
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Point ⇢-defects

The link is a closed interval with ⇢-colored boundary. It evaluates under p�, ⇢q to the vector
space A “ CrGs. The “label” of the defect is therefore an element of A. Note G Ä A labels
invertible defects.

⇢-defects are topological
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Point rF -defects

The link is again a closed interval, but now with rF -colored boundary. The value
under p�, rF q is EndApHq, the space of observables that commute with the G-action

rF -defects are typically not topological
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Point �-defects: central defects

The link is S1, and the value under � is the vector space which is the center of the group
algebra A “ CrGs.

�-defects are topological
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The general point defect

A general point defect in F can be realized by a line defect in p⇢,�, rF q.

Label the defect beginning with the highest dimensional strata and work down in dimension

B pA,Aq-bimodule

⇠ vector in B

T pA,Aq-bimodule map B ›Ñ EndpHq
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Composition law on defects

Compute using the links of the defects—2 incoming and 1 outgoing

�-defects: pair of pants

⇢-defects: pair of chaps
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Commutation relations among defects

The sandwich realization makes clear that

‚ ⇢-defects (symmetries) commute with rF -defects

‚ �-defects (central symmetries) commute with both ⇢-defects and with rF -defects

However, ⇢-defects do not necessarily commute with each other

Nor do they commute with the general defect
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Finite group symmetries of an pn “ 2q-dimensional theory

Let G be a finite group, and let � be the 3-dimensional finite G-gauge theory

� : Bord3 ›Ñ AlgpCatq

with �pptq “ VectrGs, and let ⇢ be the regular right �-module with ⇢pptq “ VectrGsVectrGs

Line ⇢-defects are labeled by objects in VectrGs; elements g P G label invertible defects

Line �-defects are central, in fact labeled by elements of �pS1q “ VectGpGq, the Drinfeld
center of the fusion category VectrGs

As opposed to G-symmetry in n “ 1, here the center is “bigger”
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Quotients and quotient defects

We use the yoga of fully local topological field theory: let C1 be a symmetric monoidal
n-category and set C “ AlgpC1q, the pn ` 1q-category whose objects are algebras in C1

Definition: An augmentation ✏A : A Ñ 1 of an algebra A P AlgpC1q is an algebra homo-
morphism from A to the tensor unit 1 P C

Definition: Let F be a collection of pn ` 1q-dimensional fields, and suppose
� : Bordn`1pFq Ñ C is a topological field theory. A right boundary the-
ory ✏ for � is an augmentation of � if ✏pptq is an augmentation of �pptq
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Definition: Suppose given finite symmetry data p�, ⇢q and a p�, ⇢q-module structure
p rF , ✓q on a quantum field theory F . Suppose ✏ is an augmentation of �.
Then the quotient of F by the symmetry � is

F
✏

L
� “ ✏ b�

rF
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Dirichlet-to-Neumann and Neumann-to-Dirichlet domain walls

The categories of domain walls ⇢ Ñ ✏ and ✏ Ñ ⇢ are each free of rank one; let

� : ⇢ ›Ñ ✏

�˚ : ✏ ›Ñ ⇢

be generators. Transporting via ✓ we obtain domain walls

� : F ›Ñ F
L
�

�˚ : F
L
� ›Ñ F

We will soon compute the self-domain wall

�˚ ˝ � : F ›Ñ F
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Quotient defects (after Roumpedakis–Seifnashri–Shao arXiv:2204.02407)

Passing from F to F
L
� on a manifold M places the topological defect ✏ on all of M

There is also a quotient defect ✏pZq—it is a ⇢-defect—supported on a submanifold Z Ä M ,
defined using a tubular neighborhood ⌫ of Z Ä M . It is topological, as are all ⇢-defects

If codimM pZq “ 1, then
✏pZq “ �˚ ˝ �
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Computation for finite homotopy theories

Finite homotopy theories are a special class of topological field theories, introduced in 1988

by Kontsevich, picked up a few years later by Quinn, developed by Turaev, . . .

They are associated to a ⇡-finite topological space X (possibly equipped with a “cocycle”)

They occur often in this context as � “ �X, e.g., for X “ BG or X “ Bp`1A or extensions

B2A ›Ñ X ›Ñ BG

Defects—in particular quotient defects—can be made explicit and computations are easy.

Here is the composition �˚ ˝ �, essentially a finite homotopy theory based on ⌦X:

⌦X

}} !!˚
�� !!

˚
}} ��˚

⇢

!!

X

✏

✏✏

˚
⇢

}}
X

⌦X

�� ��˚
⇢

��

˚
⇢

��
X
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Duality defects (after Córdova–Choi–Hsin–Lam–Shao arXiv:2111.01139)

I conclude with an application—symmetry used to constrain dynamics via:

If a gapped theory FUV has a p�, ⇢q-module structure, then the low energy topological
field theory approximation FIR should also have a p�, ⇢q-module structure

p�, ⇢q ö

FUV

p�, ⇢q ö

FIR

RG flow

We will prove in a particular example that there does not exist a topological left
�-module �̃ such that � :“ ⇢ b� �̃ is invertible. Therefore, FUV cannot flow to an invertible

field theory, i.e., is not “trivially gapped”

It follows that A :“ �pptq does not admit an augmentation (’t Hooft anomaly)

Warning: To apply to the following example, � here includes the duality defect �
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Duality defect

� n ` 1-dimensional topological field theory

⇢ right regular �-module

✏ augmentation of �: “invertible” right �-module

rF left �-module

F n-dimensional QFT ⇢ b�
rF

F
L
� n-dimensional QFT ✏ b�

rF

Suppose there is an isomorphism � : F
L
�

–››Ñ F . Recall � : F Ñ F
L
�

Definition: The duality defect � is the self-domain wall

� “ � ˝ � : F ›Ñ F

Computation: �˚ ˝ � “ p��q˚p��q “ �˚�˚�� “ �˚ ˝ � since �˚ “ �´1 (� is invertible)
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Example

Let n “ 4 and let � be the 5-dimensional finite homotopy theory built from X “ B2
/µ

2

This models B/µ
2
-symmetry (“1-form symmetry”)

Recall that ⇢, ✏, �, and �˚ and the composition �˚ ˝ � fit into the diagram

⌦X
|| ""˚

�� ""
˚

|| ��˚
⇢

""

X
✏

✏✏

˚
⇢

||
X

�˚ ˝ � is roughly 3-dimensional /µ
2
-gauge theory

In an invertible p�, ⇢q-module �, the self-domain wall �˚ ˝ �
is multiplication by 3-dimensional /µ

2
-gauge theory
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Now suppose F is a 4d QFT with a left p�, ⇢q-structure, and assume given an isomorphism

� : F
L
�

–››Ñ F

Example: F is U1 gauge theory with coupling constant ⌧
F has B/µ

2
symmetry from /µ

2
Ä U1

F
L
� is U1 gauge theory with coupling constant ⌧{4

� is S-duality which sends ⌧ fiÑ ´1{⌧
Set ⌧ “ 2

?´1

We do not use details of the gauge theory beyond its B/µ
2
symmetry

Then the duality defect � : F Ñ F is a “square root” of 3d /µ
2
gauge theory

Theorem: No such square root exists

Conclusion: The gauge theory F is not trivially gapped
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Notes from a set of four summer school lectures on this topic are at

https://web.ma.utexas.edu/users/dafr/Freed perim.pdf

and (very soon) on the Global Categorical Symmetries website:

https://scgcs.berkeley.edu/2022-school/

The latter has lecture notes on related topics and there are more resources at:

https://scgcs.berkeley.edu/


