Finite Symmetry in Field Theory

Dan Freed
University of Texas at Austin

July 12, 2022

Joint work with Greg Moore and Constantin Teleman
Simons Collaboration (https://scgcs.berkeley.edu)

Global Categorical Symmetry
Categorical Symmetry
Simons Collaboration (https://scgcs.berkeley.edu)

Symmetry
Symmetry in QFT

Motivating idea for this talk:

Separate out the abstract structure of symmetry from its concrete manifestations as actions or representations.
Symmetry in QFT is a big topic; the framework discussed here only scratches the surface.
Symmetry in QFT is a big topic; the framework discussed here only scratches the surface.

The framework we present applies to finite symmetries, analogous to finite group symmetry.
Symmetry in QFT is a big topic; the framework discussed here only scratches the surface.

The framework we present applies to finite symmetries, analogous to finite group symmetry.

It includes finite “homotopical symmetries”, such as higher groups, 2-groups, . . .
Symmetry in QFT is a big topic; the framework discussed here only scratches the surface.

The framework we present applies to finite symmetries, analogous to finite group symmetry.

It includes finite “homotopical symmetries”, such as higher groups, 2-groups, . . .

Our framework makes clear the topological character of symmetry, we exhibit some phenomena that can occur, and we review a bit of recent work from this viewpoint.
Symmetry in QFT is a big topic; the framework discussed here only scratches the surface.

The framework we present applies to finite symmetries, analogous to finite group symmetry.

It includes finite “homotopical symmetries”, such as higher groups, 2-groups, . . .

Our framework makes clear the topological character of symmetry, we exhibit some phenomena that can occur, and we review a bit of recent work from this viewpoint.

Details appear in lecture notes on the collaboration website and in a forthcoming paper.
Symmetry in QFT is a big topic; the framework discussed here only scratches the surface.

The framework we present applies to finite symmetries, analogous to finite group symmetry.

It includes finite “homotopical symmetries”, such as higher groups, 2-groups, . . .

Our framework makes clear the topological character of symmetry, we exhibit some phenomena that can occur, and we review a bit of recent work from this viewpoint.

Details appear in lecture notes on the collaboration website and in a forthcoming paper.

Motivation: algebras

Abstract symmetry data (for algebras) is a pair \((A, R)\):

- \(A\): algebra
- \(R\): right regular module

Definition: Let \(V\) be a vector space. An \((A, R)\)-action on \(V\) is a pair \((L, \theta)\) consisting of a left \(A\)-module \(L\) together with an isomorphism of vector spaces

\[
\theta: R \otimes_A L \xrightarrow{\simeq} V
\]
Motivation: algebras

Abstract symmetry data (for algebras) is a pair \((A, R)\):

- \(A\) algebra
- \(R\) right regular module

Definition: Let \(V\) be a vector space. An \((A, R)\)-action on \(V\) is a pair \((L, \theta)\) consisting of a left \(A\)-module \(L\) together with an isomorphism of vector spaces

\[
\theta: R \otimes_A L \xrightarrow{\cong} V
\]

\(R\) allows us to recover the vector space underlying \(L\)—a bit pedantic here; crucial later
Motivation: algebras

Abstract symmetry data (for algebras) is a pair \((A, R)\):

\[A \quad \text{algebra} \]
\[R \quad \text{right regular module} \]

Definition: Let \(V \) be a vector space. An \((A, R)\)-action on \(V \) is a pair \((L, \theta)\) consisting of a left \(A \)-module \(L \) together with an isomorphism of vector spaces

\[\theta: R \otimes_A L \xrightarrow{\cong} V \]

\(R \) allows us to recover the vector space underlying \(L \)—a bit pedantic here; crucial later

Elements of \(A \) act on all modules; relations in \(A \) apply (e.g. Casimirs in \(U(\mathfrak{g}) \))
Motivation: algebras

Abstract symmetry data (for algebras) is a pair \((A, R)\):

- \(A\) algebra
- \(R\) right regular module

Definition: Let \(V\) be a vector space. An \((A, R)\)-action on \(V\) is a pair \((L, \theta)\) consisting of a left \(A\)-module \(L\) together with an isomorphism of vector spaces

\[
\theta: R \otimes_A L \xrightarrow{\cong} V
\]

\(R\) allows us to recover the vector space underlying \(L\)—a bit pedantic here; crucial later

Elements of \(A\) act on all modules; relations in \(A\) apply (e.g. Casimirs in \(U(g)\))

Analogy:
- algebra \(\rightsquigarrow\) topological field theory
- element of algebra \(\rightsquigarrow\) defect in TFT
Example: Let G be a finite group. Its group algebra is

$$\mathbb{C}[G] = \left\{ \sum_{g \in G} \lambda_g g \right\}, \quad \lambda_g \in \mathbb{C}$$

Identify $\mathbb{C}[G] = \text{Fun}(G)$; convolution product is pushforward under

$$\text{mult}: G \times G \rightarrow G$$
Example: Let G be a finite group. Its group algebra is

$$\mathbb{C}[G] = \left\{ \sum_{g \in G} \lambda_g g \right\}, \quad \lambda_g \in \mathbb{C}$$

Identify $\mathbb{C}[G] = \text{Fun}(G)$; convolution product is pushforward under $\text{mult}: G \times G \rightarrow G$

Higher Example: $\text{Vect} = \text{category of finite dimensional complex vector spaces}. \text{ Define } \text{ Vect} [G] \text{ as the linear category (Vect-module) of vector bundles over } G \text{ with tensor product pushforward under } \text{mult. It is a fusion category }
Definition: An augmentation of an algebra A is an algebra homomorphism $\epsilon: A \to \mathbb{C}$. Use ϵ to give a right A-module structure to \mathbb{C}: $\lambda \cdot a = \lambda \epsilon(a)$, $\lambda \in \mathbb{C}$.
Quotients: augmentations

Definition: An *augmentation* of an algebra A is an algebra homomorphism $\epsilon: A \rightarrow \mathbb{C}$.

Use ϵ to give a right A-module structure to \mathbb{C}: $\lambda \cdot a = \lambda \epsilon(a)$, $\lambda \in \mathbb{C}$

Example: $A = \mathbb{C}[G]$:

$$\epsilon: \mathbb{C}[G] \rightarrow \mathbb{C}$$

$$\sum_{g \in G} \lambda_g g \mapsto \sum_{g \in G} \lambda_g$$
Quotients: augmentations

Definition: An *augmentation* of an algebra A is an algebra homomorphism $\epsilon: A \rightarrow \mathbb{C}$.

Use ϵ to give a right A-module structure to \mathbb{C}: $\lambda \cdot a = \lambda \epsilon(a)$, $\lambda \in \mathbb{C}$

Example: $A = \mathbb{C}[G]$:

$$\epsilon: \mathbb{C}[G] \rightarrow \mathbb{C}$$

$$\sum_{g \in G} \lambda_g g \mapsto \sum_{g \in G} \lambda_g$$

The “quotient” of a left A-module L is the vector space

$$Q = \mathbb{C} \otimes_A L = \mathbb{C} \otimes_\epsilon L$$
Quotients: augmentations

Definition: An augmentation of an algebra A is an algebra homomorphism $\varepsilon : A \to \mathbb{C}$.

Use ε to give a right A-module structure to \mathbb{C}: $\lambda \cdot a = \lambda \varepsilon(a)$, $\lambda \in \mathbb{C}$

Example: $A = \mathbb{C}[G]$:

$\varepsilon : \mathbb{C}[G] \longrightarrow \mathbb{C}$

$$\sum_{g \in G} \lambda_g g \mapsto \sum_{g \in G} \lambda_g$$

The “quotient” of a left A-module L is the vector space

$$Q = \mathbb{C} \otimes_A L = \mathbb{C} \otimes_{\varepsilon} L$$

Example: $A = \mathbb{C}[G]$, S a finite G-set, $L = \mathbb{C}\langle S \rangle$: then $Q = \mathbb{C} \otimes_A \mathbb{C}\langle S \rangle \cong \mathbb{C}\langle S/G \rangle$
Quotients: augmentations

Definition: An *augmentation* of an algebra A is an algebra homomorphism $\epsilon: A \rightarrow \mathbb{C}$.

Use ϵ to give a right A-module structure to \mathbb{C}: $\lambda \cdot a = \lambda \epsilon(a)$, $\lambda \in \mathbb{C}$

Example: $A = \mathbb{C}[G]$:

$$\epsilon: \mathbb{C}[G] \longrightarrow \mathbb{C}$$

$$\sum_{g \in G} \lambda_g g \longmapsto \sum_{g \in G} \lambda_g$$

The “quotient” of a left A-module L is the vector space

$$Q = \mathbb{C} \otimes_A L = \mathbb{C} \otimes_\epsilon L$$

Example: $A = \mathbb{C}[G]$, S a finite G-set, $L = \mathbb{C}\langle S \rangle$: then $Q = \mathbb{C} \otimes_A \mathbb{C}\langle S \rangle \cong \mathbb{C}\langle S/G \rangle$

Augmentations for higher algebras: Φ tensor category $\quad \epsilon: \Phi \rightarrow \text{Vect}$ fiber functor
Projective symmetries

Quantum theory is *projective*, not *linear*: pure states form a projective space
Projective symmetries

Quantum theory is *projective*, not *linear*: pure states form a projective space

The “projectivity” of a theory is encoded in an (’t Hooft) *anomaly*
Projective symmetries

Quantum theory is *projective*, not *linear*: pure states form a projective space.

The “projectivity” of a theory is encoded in an (’t Hooft) *anomaly*.

Symmetries are also projective—in our present context the algebra A includes projectivity.
Projective symmetries

Quantum theory is *projective*, not *linear*: pure states form a projective space

The “projectivity” of a theory is encoded in an (’t Hooft) *anomaly*

Symmetries are also projective—in our present context the algebra A includes projectivity

Example: Projective representation of G is linear representation of G^τ in a central extension

$$1 \longrightarrow \mathbb{C}^\times \longrightarrow G^\tau \longrightarrow G \longrightarrow 1$$

Isomorphism class of extension $[\tau] \in H^2(G; \mathbb{C}^\times)$ Module over twisted group algebra:

$$A^\tau = \bigoplus_{g \in G} L^\tau_g$$
Projective symmetries

Quantum theory is *projective*, not *linear*: pure states form a projective space.

The “projectivity” of a theory is encoded in an (’t Hooft) *anomaly*.

Symmetries are also projective—in our present context the algebra A includes projectivity.

Example: Projective representation of G is linear representation of G^τ in a central extension

$$1 \rightarrow \mathbb{C}^\times \rightarrow G^\tau \rightarrow G \rightarrow 1$$

Isomorphism class of extension $[\tau] \in H^2(G; \mathbb{C}^\times)$

Module over twisted group algebra:

$$A^\tau = \bigoplus_{g \in G} L_g^\tau$$

An augmentation $\epsilon : A^\tau \rightarrow \mathbb{C}$ splits the extension, so does not exist if $[\tau] \neq 0$.
Field theory

Analogy: field theory ~ module over an algebra OR ~ representation of a Lie group

Warning: This analogy is quite limited
Field theory

Analogy: field theory \sim module over an algebra OR \sim representation of a Lie group

Warning: This analogy is quite limited

Segal Axiom System: A (Wick-rotated) field theory F is a linear representation of a bordism (multi)category $\text{Bord}_n(F)$

- n dimension of spacetime
- F background fields (orientation, Riemannian metric, ...)

\[
\begin{align*}
\gamma_{n-1} & \xrightarrow{F} F(\gamma) \\
\gamma_1 & \xrightarrow{\gamma_2} \text{\`} X^n : \gamma_1 \cup \gamma_2 \cup \gamma_3 \to \phi^{n-1} \\
\gamma_3 & \xrightarrow{\gamma_4} F(X) : F(\gamma_1) \otimes F(\gamma_2) \otimes F(\gamma_3) \to \mathcal{C}
\end{align*}
\]
Field theory

Analogy: field theory \sim module over an algebra OR \sim representation of a Lie group

Warning: This analogy is quite limited

Segal Axiom System: A (Wick-rotated) field theory F is a linear representation of a bordism (multi)category $\text{Bord}_n(F)$

n dimension of spacetime

\mathcal{F} background fields (orientation, Riemannian metric, ...)

Fully local theory for *topological* theories; full locality in principle for general theories
Field theory

Analogy: field theory \sim module over an algebra OR \sim representation of a Lie group

Warning: This analogy is quite limited

Segal Axiom System: A (Wick-rotated) field theory F is a linear representation of a bordism (multi)category $\text{Bord}_n(\mathcal{F})$

- n dimension of spacetime
- \mathcal{F} background fields (orientation, Riemannian metric, ...)

Fully local theory for *topological* theories; full locality in principle for general theories

Kontsevich-Segal: Axioms for 2-tier nontopological theory $F : \text{Bord}_{n-1,n}(\mathcal{F}) \to t\text{Vect}$
Domain walls, boundary theories, defects

\(\sigma, \sigma_1, \sigma_2 \) \hspace{0.5cm} (n + 1)-dimensional theories
\(\delta: \sigma_1 \rightarrow \sigma_2 \) \hspace{0.5cm} domain wall
\(\rho: \sigma \rightarrow \mathbb{1} \) \hspace{0.5cm} right boundary theory
\(\hat{F}: \mathbb{1} \rightarrow \sigma \) \hspace{0.5cm} left boundary theory

The "sandwich" \(\delta \ F \) is an (absolute) \(n \)-dimensional theory

More generally, one can put defects on any (stratified) manifold \(D \subset M \).
Domain walls, boundary theories, defects

\[\sigma, \sigma_1, \sigma_2 \quad (n + 1) \text{-dimensional theories} \]
\[\delta: \sigma_1 \to \sigma_2 \quad \text{domain wall} \quad (\sigma_2, \sigma_1) \text{-bimodule} \]
\[\rho: \sigma \to \mathbb{1} \quad \text{right boundary theory} \quad \text{right } \sigma \text{-module} \]
\[\tilde{F}: \mathbb{1} \to \sigma \quad \text{left boundary theory} \quad \text{left } \sigma \text{-module} \]
Domain walls, boundary theories, defects

\(\sigma, \sigma_1, \sigma_2 \) \hspace{1cm} (\(n + 1 \))-dimensional theories

\(\delta : \sigma_1 \rightarrow \sigma_2 \) \hspace{1cm} domain wall \hspace{1cm} (\(\sigma_2, \sigma_1 \))-bimodule

\(\rho : \sigma \rightarrow \mathbb{1} \) \hspace{1cm} right boundary theory \hspace{1cm} right \(\sigma \)-module

\(\tilde{F} : \mathbb{1} \rightarrow \sigma \) \hspace{1cm} left boundary theory \hspace{1cm} left \(\sigma \)-module

The “sandwich” \(\rho \otimes_\sigma \tilde{F} \) is an (absolute) \(n \)-dimensional theory
Domain walls, boundary theories, defects

$\sigma, \sigma_1, \sigma_2$ \hspace{1cm} $(n + 1)$-dimensional theories

$\delta: \sigma_1 \rightarrow \sigma_2$ \hspace{1cm} domain wall \hspace{1cm} (σ_2, σ_1)-bimodule

$\rho: \sigma \rightarrow \mathbb{1}$ \hspace{1cm} right boundary theory \hspace{1cm} right σ-module

$\tilde{F}: \mathbb{1} \rightarrow \sigma$ \hspace{1cm} left boundary theory \hspace{1cm} left σ-module

The “sandwich” $\rho \otimes_{\sigma} \tilde{F}$ is an (absolute) n-dimensional theory

More generally, one can put defects on any (stratified) manifold $D \subset M$
Given two field theories F_1, F_2 on the same domain $\text{Bord}_n(\mathcal{F})$, there is a composition $F_1 \otimes F_2$. The composition law is sometimes called \textit{stacking}. There is a unit 1 for the composition law.
Composition laws; invertibility

- Given two field theories F_1, F_2 on the same domain $\text{Bord}_n(\mathcal{F})$, there is a composition $F_1 \otimes F_2$. The composition law is sometimes called *stacking*. There is a unit $\mathbb{1}$ for the composition law.

- There is also a composition law on parallel defects, for example the OPE on point defects. In a topological theory one obtains a higher algebra of defects.
Composition laws; invertibility

• Given two field theories F_1, F_2 on the same domain $\text{Bord}_n(\mathcal{F})$, there is a composition $F_1 \otimes F_2$. The composition law is sometimes called \textit{stacking}. There is a unit $\mathbb{1}$ for the composition law.

• There is also a composition law on parallel defects, for example the OPE on point defects. In a topological theory one obtains a higher algebra of defects.

So a notion of \textit{invertible} field theory and \textit{invertible} defect
Main definition: abstract symmetry data

Fix a dimension n and background fields \mathcal{F} (which we keep implicit)

Definition: Finite field-theoretic symmetry data of dimension n is a pair (σ, ρ) in which σ is an $(n + 1)$-dimensional topological field theory and ρ is a topological right σ-module.
Main definition: abstract symmetry data

Fix a dimension n and background fields \mathcal{F} (which we keep implicit)

Definition: Finite field-theoretic symmetry data of dimension n is a pair (σ, ρ) in which

- σ is an $(n + 1)$-dimensional topological field theory and
- ρ is a topological right σ-module.

Example: Let G be a finite group. Then for a G-symmetry we let σ be finite gauge theory in dimension $n + 1$. Note this is the *quantum* theory which sums over principal G-bundles.
Main definition: abstract symmetry data

Fix a dimension n and background fields \mathcal{F} (which we keep implicit)

Definition: Finite field-theoretic symmetry data of dimension n is a pair (σ, ρ) in which σ is an $(n + 1)$-dimensional topological field theory and ρ is a topological right σ-module.

Example: Let G be a finite group. Then for a G-symmetry we let σ be finite gauge theory in dimension $n + 1$. Note this is the *quantum* theory which sums over principal G-bundles

Regular ρ: Suppose \mathcal{C}' is a symmetric monoidal n-category and σ is an $(n + 1)$-dimensional topological field theory with codomain $\mathcal{C} = \text{Alg}(\mathcal{C}')$. Let $A = \sigma(\text{pt})$. Then A is an algebra in \mathcal{C}' which, as an object in \mathcal{C}, is $(n + 1)$-dualizable. Assume that the right regular module A_A is n-dualizable as a 1-morphism in \mathcal{C}. Then the boundary theory ρ determined by A_A is the right regular boundary theory of σ, or the right regular σ-module.
Main definition: abstract symmetry data

Fix a dimension \(n \) and background fields \(\mathcal{F} \) (which we keep implicit)

Definition: Finite field-theoretic symmetry data of dimension \(n \) is a pair \((\sigma, \rho)\) in which \(\sigma \) is an \((n + 1)\)-dimensional topological field theory and \(\rho \) is a topological right \(\sigma \)-module.

Example: Let \(G \) be a finite group. Then for a \(G \)-symmetry we let \(\sigma \) be finite gauge theory in dimension \(n + 1 \). Note this is the *quantum* theory which sums over principal \(G \)-bundles.

Regular \(\rho \): Suppose \(\mathcal{C}' \) is a symmetric monoidal \(n \)-category and \(\sigma \) is an \((n + 1)\)-dimensional topological field theory with codomain \(\mathcal{C} = \text{Alg}(\mathcal{C}') \). Let \(A = \sigma(\text{pt}) \). Then \(A \) is an algebra in \(\mathcal{C}' \) which, as an object in \(\mathcal{C} \), is \((n + 1)\)-dualizable. Assume that the right regular module \(A_A \) is \(n \)-dualizable as a 1-morphism in \(\mathcal{C} \). Then the boundary theory \(\rho \) determined by \(A_A \) is the right regular boundary theory of \(\sigma \), or the right regular \(\sigma \)-module.

A regular boundary theory is also called *Dirichlet*
Main definition: concrete realization of symmetry

Let σ be an $(n + 1)$-dimensional topological field theory and let ρ be a right σ-module.

Definition: A (σ, ρ)-module structure on an n-dimensional field theory F is a pair (\tilde{F}, θ) in which \tilde{F} is a left σ-module and θ is an isomorphism

$$\theta: \rho \otimes_\sigma \tilde{F} \xrightarrow{\cong} F$$

of absolute n-dimensional theories.
Main definition: concrete realization of symmetry

Let \(\sigma \) be an \((n + 1)\)-dimensional topological field theory and let \(\rho \) be a right \(\sigma \)-module.

Definition: A \((\sigma, \rho)\)-module structure on an \(n\)-dimensional field theory \(F \) is a pair \((\hat{F}, \theta)\) in which \(\hat{F} \) is a left \(\sigma \)-module and \(\theta \) is an isomorphism

\[
\theta: \rho \otimes_{\sigma} \hat{F} \xrightarrow{\cong} F
\]

of absolute \(n\)-dimensional theories.

- The theory \(F \) and so the boundary theory \(\hat{F} \) may be topological or nontopological
Main definition: concrete realization of symmetry

Let σ be an $(n + 1)$-dimensional topological field theory and let ρ be a right σ-module.

Definition: A (σ, ρ)-module structure on an n-dimensional field theory F is a pair (\tilde{F}, θ) in which \tilde{F} is a left σ-module and θ is an isomorphism

$$\theta: \rho \otimes_\sigma \tilde{F} \xrightarrow{\cong} F$$

of absolute n-dimensional theories.

- The theory F and so the boundary theory \tilde{F} may be topological or nontopological.
- The sandwich picture of F as $\rho \otimes_\sigma \tilde{F}$ separates out the topological part (σ, ρ) of the theory from the potentially nontopological part \tilde{F} of the theory.
Main definition: concrete realization of symmetry

Let σ be an $(n+1)$-dimensional topological field theory and let ρ be a right σ-module.

Definition: A (σ, ρ)-*module structure* on an n-dimensional field theory F is a pair (\tilde{F}, θ) in which \tilde{F} is a left σ-module and θ is an isomorphism

$$\theta: \rho \otimes_\sigma \tilde{F} \xrightarrow{\cong} F$$

of absolute n-dimensional theories.

- The theory F and so the boundary theory \tilde{F} may be topological or nontopological.
- The sandwich picture of F as $\rho \otimes_\sigma \tilde{F}$ separates out the topological part (σ, ρ) of the theory from the potentially nontopological part \tilde{F} of the theory.
- Symmetry persists under renormalization group flow, hence a low energy approximation to F should also be an (σ, ρ)-module. If F is gapped, then we can bring to bear powerful methods and theorems in topological field theory to investigate topological left σ-modules. This leads to dynamical predictions.
Example: quantum mechanics with G-symmetry

$n = 1$

\mathcal{F} \{orientation, Riemannian metric\} for F and \tilde{F}

\mathcal{H} Hilbert space

H Hamiltonian

$G \subset \mathcal{H}$ finite group

$S : G \to \text{Aut}(\mathcal{H})$ action on \mathcal{H}

$\sigma(\text{pt})$ $\mathbb{C}[G]$

$F(\text{pt})$ \mathcal{H}

$\tilde{F}(\text{pt})$ $\mathbb{C}[G]\mathcal{H}$ (left module)
Example: quantum mechanics with G-symmetry

$n = 1$

\mathcal{F} \{orientation, Riemannian metric\} for F and \tilde{F}

\mathcal{H} Hilbert space

H Hamiltonian

$G \subset \mathcal{H}$ finite group

$S : G \to \text{Aut}(\mathcal{H})$ action on \mathcal{H}

$\sigma(\text{pt})$ $\mathbb{C}[G]$

$F(\text{pt})$ \mathcal{H}

$\tilde{F}(\text{pt})$ $\mathbb{C}[G]H$ (left module)

Evaluation of some bordisms:

(a) the left module $\mathbb{C}[G]H$

(b) $e^{-\tau H/h} : \mathbb{C}[G]H \to \mathbb{C}[G]H$

(c) the central function $g \mapsto \text{Tr}_H(S(g)e^{-\tau H/h})$ on G
Example: gauge theory with BA-symmetry

- n: any dimension
- A: finite abelian group $A = \mu_2$
- BA: a homotopical/shifted A ("1-form A-symmetry")
- H: Lie group with $A \subset Z(H)$ $H = SU_2$
- $\overline{H} = H/A$: $\overline{H} = SO_3$
- F: H-gauge theory
- \tilde{F}: \overline{H}-gauge theory
Example: gauge theory with BA-symmetry

n
any dimension

A
finite abelian group $A = \mathbb{Z}_2$

BA
a homotopical/shifted A (“1-form A-symmetry”)

H
Lie group with $A \subset Z(H)$ $H = \text{SU}_2$

$\overline{H} = H/A$
$\overline{H} = \text{SO}_3$

F
H-gauge theory

\tilde{F}
\overline{H}-gauge theory

A quotient construction allows to recover absolute \overline{H}-gauge theory as a sandwich (later)
Defects: quantum mechanics

$n = 1$

\mathcal{H} Hilbert space

H Hamiltonian

$G \subset \mathcal{H}$ finite group

Consider a point defect in \mathcal{H}. The link of a point in a 1-manifold (imaginary time) is S^0, a 0-sphere of radius ε, and the vector space of defects is

$$\lim_{\varepsilon \to 0} \text{Hom}_{\mathcal{H}}(S^0, \mathcal{H})$$

which is a space of singular operators on \mathcal{H}. To focus on formal aspects we write '$\text{End}_{\mathcal{H}}$'.

We now consider defects in \mathcal{F}, \mathcal{G}, r which transport to point defects in \mathcal{H}.

\[\mathcal{C}(G) \quad \sigma \quad G \mathcal{G}(\mathcal{H}, \mathcal{H}) \quad (\mathcal{H}, \mathcal{H}) \]
Consider a point defect in F. The link of a point in a 1-manifold (imaginary time) is S^0, a 0-sphere of radius ε, and the vector space of defects is

$$\lim_{\varepsilon \to 0} \text{Hom}(1, F(S^0_\varepsilon))$$

which is a space of singular operators on \mathcal{H}. To focus on formal aspects we write ‘$\text{End}(\mathcal{H})$’
Consider a point defect in F. The link of a point in a 1-manifold (imaginary time) is S^0, a 0-sphere of radius ε, and the vector space of defects is

$$\lim_{\varepsilon \to 0} \text{Hom}(1, F(S^0_\varepsilon))$$

which is a space of singular operators on \mathcal{H}. To focus on formal aspects we write ‘End(\mathcal{H})’

We now consider defects in $(\rho, \sigma, \tilde{F})$ which transport to point defects in F
Point ρ-defects

The link is a closed interval with ρ-colored boundary. It evaluates under (σ, ρ) to the vector space $A = \mathbb{C}[G]$. The “label” of the defect is therefore an element of A. Note $G \subset A$ labels invertible defects.

ρ-defects are topological

$\mathbb{C}(G) \quad \sigma \quad G_{G(\mathbb{H}, \mathbb{H})} \quad (\mathbb{H}, \mathbb{H}) \quad \simeq \quad A$
Point \tilde{F}-defects

The link is again a closed interval, but now with \tilde{F}-colored boundary. The value under (σ, \tilde{F}) is $\text{End}_A(\mathcal{H})$, the space of observables that commute with the G-action. \tilde{F}-defects are typically not topological.
Point σ-defects: central defects

The link is S^1, and the value under σ is the vector space which is the center of the group algebra $A = \mathbb{C}[G]$.

σ-defects are topological
The general point defect

A general point defect in F can be realized by a line defect in $(\rho, \sigma, \widetilde{F})$.

Label the defect beginning with the highest dimensional strata and work down in dimension:

- B \((A, A)\)-bimodule
- ξ vector in B
- T \((A, A)\)-bimodule map $B \rightarrow \text{End}(\mathcal{H})$
Composition law on defects

Compute using the links of the defects—2 incoming and 1 outgoing

\(\sigma\)-defects: pair of pants

\(\rho\)-defects: pair of chaps
Commutation relations among defects

The sandwich realization makes clear that

- \(\rho \)-defects (symmetries) commute with \(\tilde{F} \)-defects
- \(\sigma \)-defects (central symmetries) commute with both \(\rho \)-defects and with \(\tilde{F} \)-defects

However, \(\rho \)-defects do not necessarily commute with each other nor do they commute with the general defect.
Commutation relations among defects

The sandwich realization makes clear that

- ρ-defects (symmetries) commute with \tilde{F}-defects
- σ-defects (central symmetries) commute with both ρ-defects and with \tilde{F}-defects

However, ρ-defects do not necessarily commute with each other
Commutation relations among defects

The sandwich realization makes clear that

- \(\rho \)-defects (symmetries) commute with \(\tilde{F} \)-defects
- \(\sigma \)-defects (central symmetries) commute with both \(\rho \)-defects and with \(\tilde{F} \)-defects

However, \(\rho \)-defects do not necessarily commute with each other

Nor do they commute with the general defect
Finite group symmetries of an \((n = 2)\)-dimensional theory

Let \(G\) be a finite group, and let \(\sigma\) be the 3-dimensional finite \(G\)-gauge theory

\[
\sigma : \text{Bord}_3 \to \text{Alg}(\text{Cat})
\]

with \(\sigma(\text{pt}) = \text{Vect}[G]\), and let \(\rho\) be the regular right \(\sigma\)-module with \(\rho(\text{pt}) = \text{Vect}[G]_{\text{Vect}[G]}\).
Finite group symmetries of an \((n = 2)\)-dimensional theory

Let \(G\) be a finite group, and let \(\sigma\) be the 3-dimensional finite \(G\)-gauge theory

\[\sigma : \text{Bord}_3 \longrightarrow \text{Alg(Cat)} \]

with \(\sigma(\text{pt}) = \text{Vect}[G]\), and let \(\rho\) be the regular right \(\sigma\)-module with \(\rho(\text{pt}) = \text{Vect}[G]_{\text{Vect}[G]}\)

Line \(\rho\)-defects are labeled by objects in \(\text{Vect}[G]\); elements \(g \in G\) label invertible defects
Finite group symmetries of an \((n = 2)\)-dimensional theory

Let \(G\) be a finite group, and let \(\sigma\) be the 3-dimensional finite \(G\)-gauge theory

\[
\sigma: \text{Bord}_3 \longrightarrow \text{Alg} (\text{Cat})
\]

with \(\sigma(\text{pt}) = \text{Vect}[G]\), and let \(\rho\) be the regular right \(\sigma\)-module with \(\rho(\text{pt}) = \text{Vect}[G]_{\text{Vect}[G]}\).

Line \(\rho\)-defects are labeled by objects in \(\text{Vect}[G]\); elements \(g \in G\) label invertible defects.

Line \(\sigma\)-defects are central, in fact labeled by elements of \(\sigma(S^1) = \text{Vect}_G(G)\), the Drinfeld center of the fusion category \(\text{Vect}[G]\).
Finite group symmetries of an \((n = 2)\)-dimensional theory

Let \(G\) be a finite group, and let \(\sigma\) be the 3-dimensional finite \(G\)-gauge theory

\[
\sigma : \text{Bord}_3 \longrightarrow \text{Alg(Cat)}
\]

with \(\sigma(\text{pt}) = \text{Vect}[G]\), and let \(\rho\) be the regular right \(\sigma\)-module with \(\rho(\text{pt}) = \text{Vect}[G]_{\text{Vect}[G]}\)

Line \(\rho\)-defects are labeled by objects in \(\text{Vect}[G]\); elements \(g \in G\) label invertible defects

Line \(\sigma\)-defects are central, in fact labeled by elements of \(\sigma(S^1) = \text{Vect}_G(G)\), the Drinfeld center of the fusion category \(\text{Vect}[G]\)

As opposed to \(G\)-symmetry in \(n = 1\), here the center is “bigger”
Quotients and quotient defects

We use the yoga of fully local topological field theory: let \mathcal{C}' be a symmetric monoidal n-category and set $\mathcal{C} = \text{Alg}(\mathcal{C}')$, the $(n + 1)$-category whose objects are algebras in \mathcal{C}'.
Quotients and quotient defects

We use the yoga of fully local topological field theory: let \mathcal{C}' be a symmetric monoidal n-category and set $\mathcal{C} = \text{Alg}(\mathcal{C}')$, the $(n + 1)$-category whose objects are algebras in \mathcal{C}'.

Definition: An augmentation $\varepsilon_A : A \to 1$ of an algebra $A \in \text{Alg}(\mathcal{C}')$ is an algebra homomorphism from A to the tensor unit $1 \in \mathcal{C}$.
Quotients and quotient defects

We use the yoga of fully local topological field theory: let \mathcal{C}' be a symmetric monoidal n-category and set $\mathcal{C} = \text{Alg}(\mathcal{C}')$, the $(n + 1)$-category whose objects are algebras in \mathcal{C}'

Definition: An augmentation $\epsilon_A : A \to 1$ of an algebra $A \in \text{Alg}(\mathcal{C}')$ is an algebra homomorphism from A to the tensor unit $1 \in \mathcal{C}$

Definition: Let \mathcal{F} be a collection of $(n + 1)$-dimensional fields, and suppose $\sigma : \text{Bord}_{n+1}(\mathcal{F}) \to \mathcal{C}$ is a topological field theory. A right boundary theory ϵ for σ is an augmentation of σ if $\epsilon(\text{pt})$ is an augmentation of $\sigma(\text{pt})$

Augmentations are also called Neumann boundary theories
Quotients and quotient defects

We use the yoga of fully local topological field theory: let \mathcal{C}' be a symmetric monoidal n-category and set $\mathcal{C} = \text{Alg}(\mathcal{C}')$, the $(n + 1)$-category whose objects are algebras in \mathcal{C}'

Definition: An augmentation $\varepsilon_A : A \to 1$ of an algebra $A \in \text{Alg}(\mathcal{C}')$ is an algebra homomorphism from A to the tensor unit $1 \in \mathcal{C}$

Definition: Let \mathcal{F} be a collection of $(n + 1)$-dimensional fields, and suppose $\sigma : \text{Bord}_{n+1}(\mathcal{F}) \to \mathcal{C}$ is a topological field theory. A right boundary theory ε for σ is an augmentation of σ if $\varepsilon(\text{pt})$ is an augmentation of $\sigma(\text{pt})$

Augmentations are also called *Neumann boundary theories*

Augmentations do not always exist
Definition: Suppose given finite symmetry data \((\sigma, \rho)\) and a \((\sigma, \rho)\)-module structure \((\tilde{F}, \theta)\) on a quantum field theory \(F\). Suppose \(\varepsilon\) is an augmentation of \(\sigma\). Then the *quotient* of \(F\) by the symmetry \(\sigma\) is

\[
\frac{F}{\sigma} = \varepsilon \otimes_{\sigma} \tilde{F}
\]
Dirichlet-to-Neumann and Neumann-to-Dirichlet domain walls

The categories of domain walls $\rho \rightarrow \epsilon$ and $\epsilon \rightarrow \rho$ are each free of rank one; let

$$\delta : \rho \longrightarrow \epsilon$$
$$\delta^* : \epsilon \longrightarrow \rho$$

be generators. Transporting via θ we obtain domain walls

$$\delta : F \longrightarrow F/\sigma$$
$$\delta^* : F/\sigma \longrightarrow F$$
Dirichlet-to-Neumann and Neumann-to-Dirichlet domain walls

The categories of domain walls $\rho \rightarrow \epsilon$ and $\epsilon \rightarrow \rho$ are each free of rank one; let

$$\delta : \rho \rightarrow \epsilon$$
$$\delta^* : \epsilon \rightarrow \rho$$

be generators. Transporting via θ we obtain domain walls

$$\delta : F \rightarrow F/\sigma$$
$$\delta^* : F/\sigma \rightarrow F$$

We will soon compute the self-domain wall

$$\delta^* \circ \delta : F \rightarrow F$$
Quotient defects (after Roumpedakis–Seifnashri–Shao arXiv:2204.02407)

Passing from F to F/σ on a manifold M places the topological defect ϵ on all of M
Quotient defects (after Roumpedakis–Seifnashri–Shao arXiv:2204.02407)

Passing from F to F/σ on a manifold M places the topological defect ϵ on all of M.

There is also a quotient defect $\epsilon(Z)$—it is a ρ-defect—supported on a submanifold $Z \subset M$, defined using a tubular neighborhood ν of $Z \subset M$. It is topological, as are all ρ-defects.

\[
\text{Codim}_M(Z) = 1
\]

\[
\text{codim}_M(Z) = 2
\]
Quotient defects (after Roumpedakis–Seifnashri–Shao arXiv:2204.02407)

Passing from F to F/σ on a manifold M places the topological defect ϵ on all of M.

There is also a quotient defect $\epsilon(Z)$—it is a ρ-defect—supported on a submanifold $Z \subset M$, defined using a tubular neighborhood ν of $Z \subset M$. It is topological, as are all ρ-defects.

If $\text{codim}_M(Z) = 1$, then

$$\epsilon(Z) = \delta^* \circ \delta$$
Computation for finite homotopy theories

Finite homotopy theories are a special class of topological field theories, introduced in 1988 by Kontsevich, picked up a few years later by Quinn, developed by Turaev, ...
Finite homotopy theories are a special class of topological field theories, introduced in 1988 by Kontsevich, picked up a few years later by Quinn, developed by Turaev, ... They are associated to a π-finite topological space \mathcal{X} (possibly equipped with a “cocycle”).
Computation for finite homotopy theories

Finite homotopy theories are a special class of topological field theories, introduced in 1988 by Kontsevich, picked up a few years later by Quinn, developed by Turaev, . . .

They are associated to a π-finite topological space X (possibly equipped with a “cocycle”)

They occur often in this context as $\sigma = \sigma_X$, e.g., for $X = BG$ or $X = B^{p+1}A$ or extensions

$$B^2A \longrightarrow X \longrightarrow BG$$
Computation for finite homotopy theories

Finite homotopy theories are a special class of topological field theories, introduced in 1988 by Kontsevich, picked up a few years later by Quinn, developed by Turaev, ...

They are associated to a π-finite topological space \mathcal{X} (possibly equipped with a "cocycle")

They occur often in this context as $\sigma = \sigma_{\mathcal{X}}$, e.g., for $\mathcal{X} = BG$ or $\mathcal{X} = B^{p+1}A$ or extensions

$$B^2A \longrightarrow \mathcal{X} \longrightarrow BG$$

Defects—in particular quotient defects—can be made explicit and computations are easy. Here is the composition $\delta^* \circ \delta$, essentially a finite homotopy theory based on $\Omega \mathcal{X}$:
I conclude with an application—symmetry used to constrain dynamics via:

If a gapped theory F_{UV} has a (σ, ρ)-module structure, then the low energy topological field theory approximation F_{IR} should also have a (σ, ρ)-module structure.

$$\downarrow \text{RG flow}$$

$$(\sigma, \rho) \subset F_{IR}$$

We will prove in a particular example that there does not exist a topological left \tilde{F} such that $\rho_{\tilde{F}}$ is invertible. Therefore, F_{UV} cannot flow to an invertible field theory, i.e., is not "trivially gapped."
Duality defects (after Córdova–Choi–Hsin–Lam–Shao arXiv:2111.01139)

I conclude with an application—symmetry used to constrain dynamics via:

If a gapped theory F_{UV} has a (σ, ρ)-module structure, then the low energy topological field theory approximation F_{IR} should also have a (σ, ρ)-module structure

$$(\sigma, \rho) \subset F_{UV}$$

RG flow

$$(\sigma, \rho) \subset F_{IR}$$

We will prove in a particular example that there does not exist a topological left σ-module $\tilde{\lambda}$ such that $\lambda := \rho \otimes_{\sigma} \tilde{\lambda}$ is invertible. Therefore, F_{UV} cannot flow to an invertible field theory, i.e., is not “trivially gapped”
Duality defects (after Córdova–Choi–Hsin–Lam–Shao arXiv:2111.01139)

I conclude with an application—symmetry used to constrain dynamics via:

If a gapped theory F_{UV} has a (σ, ρ)-module structure, then the low energy topological field theory approximation F_{IR} should also have a (σ, ρ)-module structure

$$\begin{align*}
(\sigma, \rho) &\subset F_{UV} \\
\downarrow &\phantom{\text{RG flow}} \\
(\sigma, \rho) &\subset F_{IR}
\end{align*}$$

We will prove in a particular example that there does not exist a topological left σ-module $\tilde{\lambda}$ such that $\lambda := \rho \otimes_\sigma \tilde{\lambda}$ is invertible. Therefore, F_{UV} cannot flow to an invertible field theory, i.e., is not “trivially gapped”

It follows that $A := \sigma(pt)$ does not admit an augmentation (‘t Hooft anomaly)
Duality defects (after Córdova–Choi–Hsin–Lam–Shao arXiv:2111.01139)

I conclude with an application—symmetry used to constrain dynamics via:

If a gapped theory F_{UV} has a (σ, ρ)-module structure, then the low energy topological field theory approximation F_{IR} should also have a (σ, ρ)-module structure

\[
(\sigma, \rho) \subseteq F_{UV} \quad \text{RG flow} \quad (\sigma, \rho) \subseteq F_{IR}
\]

We will prove in a particular example that there does not exist a topological left σ-module $\tilde{\lambda}$ such that $\lambda := \rho \otimes_{\sigma} \tilde{\lambda}$ is invertible. Therefore, F_{UV} cannot flow to an invertible field theory, i.e., is not “trivially gapped”

It follows that $A := \sigma(\text{pt})$ does not admit an augmentation (’t Hooft anomaly)

Warning: To apply to the following example, σ here includes the duality defect Δ
Duality defect

σ \(n + 1 \)-dimensional topological field theory
ρ right regular \(\sigma \)-module
ε augmentation of \(\sigma \): “invertible” right \(\sigma \)-module
\(\tilde{F} \) left \(\sigma \)-module
\(F \) \(n \)-dimensional QFT \(\rho \otimes_\sigma \tilde{F} \)
\(F/\sigma \) \(n \)-dimensional QFT \(\epsilon \otimes_\sigma \tilde{F} \)

\[\sigma \] \(\sim \) \(F \) \[\Theta \] \[\sim \] \[\sim \] \[\sim \] \(\tilde{F} \) \[\sim \] \[\sim \] \[\sim \] \[\sim \] \(F/\sigma \)
Duality defect

\(\sigma \)
\(n + 1 \)-dimensional topological field theory

\(\rho \)
right regular \(\sigma \)-module

\(\epsilon \)
augmentation of \(\sigma \): “invertible” right \(\sigma \)-module

\(\tilde{F} \)
left \(\sigma \)-module

\(F \)
\(n \)-dimensional QFT \(\rho \otimes_{\sigma} \tilde{F} \)

\(F/\sigma \)
\(n \)-dimensional QFT \(\epsilon \otimes_{\sigma} \tilde{F} \)

Suppose there is an isomorphism \(\phi: F/\sigma \xrightarrow{\sim} F \). Recall \(\delta: F \rightarrow F/\sigma \)
Duality defect

\(\sigma \) \quad n + 1-dimensional topological field theory

\(\rho \) \quad right regular \(\sigma \)-module

\(\epsilon \) \quad augmentation of \(\sigma \): “invertible” right \(\sigma \)-module

\(\tilde{F} \) \quad left \(\sigma \)-module

\(F \) \quad \(n \)-dimensional QFT \(\rho \otimes_{\sigma} \tilde{F} \)

\(F/\sigma \) \quad \(n \)-dimensional QFT \(\epsilon \otimes_{\sigma} \tilde{F} \)

Suppose there is an isomorphism \(\phi: F/\sigma \xrightarrow{\sim} F \). Recall \(\delta: F \rightarrow F/\sigma \)

Definition: The *duality defect* \(\Delta \) is the self-domain wall

\[
\Delta = \phi \circ \delta: F \longrightarrow F
\]
Duality defect

\(\sigma \) \hspace{0.5cm} n + 1-dimensional topological field theory

\(\rho \) \hspace{0.5cm} right regular \(\sigma \)-module

\(\epsilon \) \hspace{0.5cm} augmentation of \(\sigma \): “invertible” right \(\sigma \)-module

\(\tilde{F} \) \hspace{0.5cm} left \(\sigma \)-module

\(F \) \hspace{0.5cm} \(n \)-dimensional QFT \(\rho \otimes_\sigma \tilde{F} \)

\(F/\sigma \) \hspace{0.5cm} \(n \)-dimensional QFT \(\epsilon \otimes_\sigma \tilde{F} \)

Suppose there is an isomorphism \(\phi : F/\sigma \xrightarrow{\sim} F \). Recall \(\delta : F \rightarrow F/\sigma \)

Definition: The *duality defect* \(\Delta \) is the self-domain wall

\[\Delta = \phi \circ \delta : F \longrightarrow F \]

Computation: \(\Delta^* \circ \Delta = (\phi \delta)^*(\phi \delta) = \delta^* \phi^* \phi \delta = \delta^* \circ \delta \) since \(\phi^* = \phi^{-1} \) (\(\phi \) is invertible)
Example

Let $n = 4$ and let σ be the 5-dimensional finite homotopy theory built from $X = B^2/\mu_2$.
Example

Let \(n = 4 \) and let \(\sigma \) be the 5-dimensional finite homotopy theory built from \(\mathcal{X} = B^2/\mu_2 \).

This models \(B/\mu_2 \)-symmetry ("1-form symmetry")
Example

Let \(n = 4 \) and let \(\sigma \) be the 5-dimensional finite homotopy theory built from \(\mathcal{X} = B^2/\mu_2 \).

This models \(B/\mu_2 \)-symmetry ("1-form symmetry").

Recall that \(\rho, \epsilon, \delta, \) and \(\delta^* \) and the composition \(\delta^* \circ \delta \) fit into the diagram

\[
\begin{array}{ccc}
\Omega \mathcal{X} & \xrightarrow{\ast} & \mathcal{X} \\
\xleftarrow{\ast} & \xleftarrow{\ast} & \xleftarrow{\ast} \\
\mathcal{X} & \xrightarrow{\epsilon} & \mathcal{X} \\
\rho & \rho & \rho
\end{array}
\]

\(\delta^* \circ \delta \) is roughly 3-dimensional \(/\mu_2 \)-gauge theory.
Example

Let $n = 4$ and let σ be the 5-dimensional finite homotopy theory built from $X = B^2/\mu_2$.

This models $B\mu_2$-symmetry ("1-form symmetry")

Recall that ρ, ϵ, δ, and δ^* and the composition $\delta^* \circ \delta$ fit into the diagram

$\delta^* \circ \delta$ is roughly 3-dimensional μ_2-gauge theory

In an invertible (σ, ρ)-module λ, the self-domain wall $\delta^* \circ \delta$ is multiplication by 3-dimensional μ_2-gauge theory.
Now suppose F is a 4d QFT with a left (σ, ρ)-structure, and assume given an isomorphism

$$\phi: F/\sigma \xrightarrow{\cong} F$$
Now suppose F is a 4d QFT with a left (σ, ρ)-structure, and assume given an isomorphism

$$
\phi: F/\sigma \xrightarrow{\cong} F
$$

Example: F is U_1 gauge theory with coupling constant τ

- F has $B|\mu_2$ symmetry from $\mu_2 \subset U_1$
- F/σ is U_1 gauge theory with coupling constant $\tau/4$
- ϕ is S-duality which sends $\tau \mapsto -1/\tau$
- Set $\tau = 2\sqrt{-1}$
Now suppose F is a 4d QFT with a left (σ, ρ)-structure, and assume given an isomorphism

$$\phi: F/\sigma \cong F$$

Example: F is U_1 gauge theory with coupling constant τ

- F has B/μ_2 symmetry from $\mu_2 \subset U_1$
- F/σ is U_1 gauge theory with coupling constant $\tau/4$
- ϕ is S-duality which sends $\tau \mapsto -1/\tau$
- Set $\tau = 2\sqrt{-1}$

We do not use details of the gauge theory beyond its B/μ_2 symmetry
Now suppose F is a 4d QFT with a left (σ, ρ)-structure, and assume given an isomorphism

$$\phi: F/\sigma \xrightarrow{\cong} F$$

Example: F is U_1 gauge theory with coupling constant τ
- F has B/μ_2 symmetry from $\mu_2 \subset U_1$
- F/σ is U_1 gauge theory with coupling constant $\tau/4$
- ϕ is S-duality which sends $\tau \mapsto -1/\tau$
- Set $\tau = 2\sqrt{-1}$

We do not use details of the gauge theory beyond its B/μ_2 symmetry

Then the duality defect $\Delta: F \to F$ is a “square root” of 3d μ_2 gauge theory
Now suppose F is a 4d QFT with a left (σ, ρ)-structure, and assume given an isomorphism

$$\phi: F/\sigma \xrightarrow{\cong} F$$

Example: F is U_1 gauge theory with coupling constant τ

- F has B/μ_2 symmetry from $\mu_2 \subset U_1$
- F/σ is U_1 gauge theory with coupling constant $\tau/4$
- ϕ is S-duality which sends $\tau \mapsto -1/\tau$
- Set $\tau = 2\sqrt{-1}$

We do not use details of the gauge theory beyond its B/μ_2 symmetry

Then the duality defect $\Delta: F \to F$ is a “square root” of 3d μ_2 gauge theory

Theorem: No such square root exists
Now suppose F is a 4d QFT with a left (σ, ρ)-structure, and assume given an isomorphism

$$\phi: F/\sigma \xrightarrow{\cong} F$$

Example: F is U_1 gauge theory with coupling constant τ

- F has B/μ_2 symmetry from $/\mu_2 \subset U_1$
- F/σ is U_1 gauge theory with coupling constant $\tau/4$
- ϕ is S-duality which sends $\tau \mapsto -1/\tau$
- Set $\tau = 2\sqrt{-1}$

We do not use details of the gauge theory beyond its B/μ_2 symmetry

Then the duality defect $\Delta: F \to F$ is a “square root” of 3d $/\mu_2$ gauge theory

Theorem: No such square root exists

Conclusion: The gauge theory F is not trivially gapped
Notes from a set of four summer school lectures on this topic are at

https://web.ma.utexas.edu/users/dafr/Freed_perim.pdf

and (very soon) on the Global Categorical Symmetries website:

https://scgcs.berkeley.edu/2022-school/

The latter has lecture notes on related topics and there are more resources at:

https://scgcs.berkeley.edu/