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\ Symmetry in QFT
\ Motivating idea for this talk:
/

Separate out the abstract structure of symmetry

from its concrete manifestations as actions
~ or representations
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Our framework makes clear the topological character of symmetry, we exhibit some
phenomena that can occur, and we review a bit of recent work from this viewpoint

Details appear in lecture notes on the collaboration website and in a forthcoming paper

Many current results about extended notions of symmetry in QFT: Apruzzi, Bah, Benini,
Bhardwaj, Bonetti, Bullimore, Cerdova, Choi, Cvetig, Del Zotto, Dumitrescu, Gaiotto,
Garc®a Etxebarria Gould, Gukov, Heckman, Heidenreich Hopkins, Hosseini Hsin, Habner,
Intriligator , Ji, Jian, Johnson-Freyd Jordan, Kaidi, Kapustin, Komargodski, Lake, Lam,
McNamara, Minasian, Montero, Ohmari, Pantev, Pei, Plavnik, Reece Robbins,
Roumpedakis Rudelius, Schafer-Nameki Scheimbauey Seiberg Seifnashri Shag Sharpe
Tachikawa, Thorngren, Torres, Vandermeulen Wang, Wen, Willett , ..., ..., ...
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Abstract symmetry data (for algebras) is a pair pA, Rqg

A algebra
R right regular module

DePnition: Let V be a vector space. AnpA, R¢action on V is a pair pL, ! qconsisting of a
left A-module L together with an isomorphism of vector spaces

PR INE T
R allows us to recover the vector space underlyindg Na bit pedantic here; crucial later

Elements of A act on all modules; relations inA apply (e.g. Casimirs in Upgqd)

algebraas ! topological pPeld theory

Analogy: element of algebrazs ' defect in TFT
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Example: Let G be a bnite group. Its group algebra is
# +
RS2
CrGs O LI Vg P
gPG
Identify CrGs O FunpGgq convolution product is pushforward under

mult: G G!, G

Higher Example:  Vect O category of bnite dimensional complex vector spaces. Debne
VectrGs as the linear category (Vect-module) of vector bundles oveG
with tensor product pushforward under mult. It is a fusion category
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DePnition: An augmentation of an algebraA is an algebra homomorphism! : A, C.

Use! to give a right A-module structure to C: " -aO "l pag " PC

Example: A O CrGs 1 CrGs e
(%) (%)

gg n!” g
gPG gPG

The OquotientO of a leftA-module L is the vector space
Q O 'Gibl BEXORE bils

Example: A O CrGs S a bnite G-set, L O CxSy: then Q O Cb , CxSy B CxS{Gy

Augmentations for higher algebras: | tensor category !:! , Vect bber functor
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Projective symmetries
Quantum theory is projective, not linear : pure states form a projective space

The OprojectivityO of a theory is encoded in an (Ot Hoofgnomaly

Symmetries are also projectiveNin our present context the algebraA includes projectivity
Example: Projective representation of G is linear represention ofG' in a central extension
19 S Co RGN G

Isomorphism class of extension! s PH?pG; CPq Module over twisted group algebra:

A @tk
gPG

An augmentation " : Al ElE splits the extension, so does not exisif r' s & 0
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Field theory

Analogy: bPeld theorya module over an algebra ORa representation of a Lie group
This analogy is quite limited

Segal Axiom System: A (Wick-rotated) Peld theory F is a linear representation of a
bordism (multi)category Bord,pF g

n dimension of spacetime
= background Pelds (orientation, Riemannian metric, ...)

Fully local theory for topological theories; full locality in principle for general theories

Kontsevich -Segal: Axioms for 2-tier nontopological theory F : Bordy,. 1nyPFd ., tVect
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Domain walls, boundary theories, defects

T ) p ~ lgdimensional theories

s S e I domain wall P 2,! 1gbimodule
Han Il Sl right boundary theory right ! -module
] left boundary theory left ! -module

The OsandwichG b, I is an (absolute) n-dimensional theory

More generally, one can putdefectson any (stratiPed) manifold D ! M
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Composition laws; invertibility

an

Given two beld theoriesF;, F> on the same domainBord, pF g there is a composition
F1 b F2. The composition law is sometimes calledstacking There is a unit 1 for the
composition law

an

There is also a composition law on parallel defects, for example the OPE on point
defects. In a topological theory one obtains a higher algebra of defects.

So a notion ofinvertible Peld theory andinvertible defect
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Fix a dimension n and background belds- (which we keep implicit)

DebPnition:

Example:

Regular

Finite Peld-theoretic symmetry data of dimensionn is a pair p , " qin which
I is anm " 1lgdimensional topological bPeld theory and" is a topological
right ! -module.

Let G be a Pnite group. Then for aG-symmetry we let! be Pnite gauge
theory in dimensionn ™ 1. Note this is the quantum theory which sums over
principal G-bundles

": SupposeC! is a symmetric monoidal n-category and ! is an pn ° 1g

dimensional topological beld theory with codomainC O AlgpCly Let
A O ! pptg Then A is an algebra inCtwhich, as an object inC, ispn” 1g
dualizable. Assume that the right regular module A, is n-dualizable as a
1-morphism in C. Then the boundary theory " determined by A, is the
right regular boundary theoryof ! , or the right regular ! -module,

A regular boundary theory is also calledDirichlet
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Main debPnition: concrete realization of symmetry

Let ! be anmn~ 1gdimensional topological Peld theory and let' be a right ! -module.

Debnition: A p,"gmodule structure on an n-dimensional beld theoryF is a pair p*, #g
in which £ is a left ! -module and# is an isomorphism

#: D Sl

of absolute n-dimensional theories.

an

The theory F and so the boundary theoryF may be topological or nontopological

an

The sandwich picture of - as” b, I separates out the topological partp , " qof the
theory from the potentially nontopological part [ of the theory.

Q»

Symmetry persists under renormalization group Row, hence a low energy
approximation to F should also be ang , “gmodule. If F is gapped, then we can bring
to bear powerful methods and theorems in topological Peld theory to investigate
topological left ! -modules. This leads to dynamical predictions
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H

G »<H

S:©,

! pptq
potq

F mtq

Example: quantum mechanics with

AutpHq

{ orientation, Riemannian metric} for
Hilbert space

Hamiltonian

Pnite group

action on H

CrGs

H

e (left module)

G-symmetry

and [



Example: quantum mechanics with G-symmetry

nO1
I { orientation, Riemannian metric} for - and
H Hilbert space
H Hamiltonian
G »H Pnite group
S: G, AutpH(q action on H
I pptq CrGs
jotg H
I potq cresH (Ieft module)

Evaluation of some bordisms:  (a) the left module . . H

(b) e«!H{!. H !”

* CrGs H

CrGs £ "
u
(c) the central function g"!, Tr, Spyge“'"! onG
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Example: gauge theory with  BA-symmetry

n any dimension
A Pnite abelian groupA O i1,
BA a homotopical/shifted A (O1-formA-symmetryO)
H Lie group with A! ZpHgH O SU;
HOH{A H OSO;
H -gauge theory
= H -gauge theory

A quotient construction allows to recover absoluteH -gauge theory as a sandwich (later)
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Defects: quantum mechanics

ne@ L
H Hilbert space
H Hamiltonian

G »H Pnite group

Consider a point defect inF. The link of a point in a 1-manifold (imaginary time) is S°, a
0-sphere of radius!, and the vector space of defects is

_ 3 u
Jim Hom 1, FpSPq
=0

which is a space of singular operators ofd. To focus on formal aspects we write EndpH o0

We mow consider defects ing', #, F qwhich transport to point defects in



Point ! -defects

The link is a closed interval with ! -colored boundary. It evaluates underpg',! qto the vector
spaceA O CrGs The OlabelO of the defect is therefore an element Af Note G! A labels
invertible defects.

I -defects are topological



Point [ -defects

The link is again a closed interval, but now with F -colored boundary. The value
under p , Fgis EndapH g the space of observables that commute with theG-action

IF -defects are typically not topological



Point ! -defects: central defects

The link is St, and the value under! is the vector space which is the center of the group
algebraA O CrGs

I -defects are topological



The general point defect
A general point defect in F can be realized by a line defect i ,", F g
Label the defect beginning with the highest dimensional strata and work down in dimension

B PA, A ¢tbimodule
# vector in B
T pA, Agbimodule mapB !, EndpH(q



Composition law on defects

Compute using the links of the defectsN2 incoming and 1 outgoing
I -defects: pair of pants

"-defects: pair of chaps
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Commutation relations among defects

The sandwich realization makes clear that
a | -defects (symmetries) commute with* -defects
a " -defects (central symmetries) commute with both! -defects and with I -defects

However, | -defects do not necessarily commute with each other

Nor do they commute with the general defect
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Finite group symmetries of an  m O 2¢dimensional theory
Let G be a bnite group, and let! be the 3-dimensional PniteG-gauge theory
I . Bords !, AlgpCatq
with | pptg O VectrGs, and let " be the regular right ! -module with " potq OveCtrGS\/ecter
Line "-defects are labeled by objects in VealGs elementsg P G label invertible defects

Line ! -defects are central, in fact labeled by elements of pS'q O VectgpGq the Drinfeld
center of the fusion category VectGs

As opposed toG-symmetry in n O 1, here the center is ObiggerO
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Quotients and quotient defects

We use the yoga of fully local topological Peld theory: letC' be a symmetric monoidal
n-category and setC O AlgpClg the pjn °~ 1g-category whose objects are algebras iG*

DePnition:  An augmentation!, : A, 1 of an algebraA P AlgpClgis an algebra homo-
morphism from A to the tensor unit 1 PC

Debnition: Let F be a collection of pn ° l1gdimensional Pelds, and suppose
": Bord, 1pFq, Cis a topological beld theory. A right boundary the-
ory ! for " is an augmentation of " if !pptgis an augmentation of" pptq

Augmentations are also calledNeumann boundary theories

Augmentations do not always exist



Depnition: Suppose given bnite symmetry datap ,"q and a p ,"gmodule structure
P, #gq on a quantum Peld theory F. Suppose$ is an augmentation of ! .
Then the quotient of F by the symmetry ! is

|“ase
F' 1.O:%hwsik
!
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Dirichlet-to-Neumann and Neumann-to-Dirichlet domain walls

The categories of domain wallsl , " and", ! are each free of rank one; let

#:01,

#lonr, o
be generators. Transporting via$ we obtain domain walls

R I,

HOE [

We will soon compute the self-domain wall

Hy#F1,
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Quotient defects (after Roumpedakis BSeifnashri BShao arXiv:2204.02407 )

Passing fromF to on a manifold M places the topological defect' on all of M

There is also aquotient defect"Z cNit is a #-defectNsupported on a submanifoldZ ! M,
debned using a tubular neighborhoods of Z ! M. Itis topological as are all#-defects

If codimy pzq O1, then ;
"ZqO By %
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Computation for Pnite homotopy theories

Finite homotopy theories are a special class of topological Peld theories, introduced in 198t
by Kontsevich, picked up a few years later byQuinn, developed byTuraev, ...

They are associated to a -bnite topological spaceX (possibly equipped with a OcocycleQ)

They occur often in this context as” O ", e.g., forX O BG or X O BP A or extensions
B?A!, X!, BG

DefectsNin particular quotient defectsNcan be made explicit and computations are easy.
Here is the composition#' y #, essentially a Pnite homotopy theory based on X:

I X

AN

5 \ ; "0\% / \
N s



Duality defects (after Caerdova BChoi BHsin BLam BShao arXiv:2111.01139 )

| conclude with an applicationNsymmetry used to constrain dynamics via:

If a gapped theory. has ap ,"gmodule structure, then the low energy topological
Peld theory approximation should also have g ," ¢module structure

Fj ,"q</)<
éRGBOW

a ,"q(m



Duality defects (after Caerdova BChoi BHsin BLam BShao arXiv:2111.01139 )

| conclude with an applicationNsymmetry used to constrain dynamics via:
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| conclude with an applicationNsymmetry used to constrain dynamics via:

If a gapped theory. has ap ,"gmodule structure, then the low energy topological
Peld theory approximation should also have g ," ¢module structure

P, g
\%RG Bow
p, g
We will prove in a particular example that there does not exist atopological left
I -module # such that # :0 " b, # is invertible. Therefore, cannot Row to an invertible
Peld theory, i.e., is not Otrivially gappedO

It follows that A :O ! pptgdoes not admit an augmentation (Ot Hooft anomaly)

To apply to the following example, ! here includes the duality defect!
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augmentation of ! : OinvertibleO right! -module

left | -module
n-dimensional QFT " b,
n-dimensional QFT #b, F
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Duality defect

! n" 1-dimensional topological Peld theory
right regular ! -module
# augmentation of ! : OinvertibleO right! -module

r left ! -module
n-dimensional QFT " b,
n-dimensional QFT #b, F

Suppose there is an isomorphisn$: !!? . Recall % F
DePnition: The duality defect! is the self-domain wall
l OSy%F !,

Computation: ! 2y ! O pbo%f poe O WS $%0 % v %since$® O $<1 ($ is invertible)
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Let n O 4 and let ! be the 5-dimensional bPnite homotopy theory built from X O lel.lz
This models B, -symmetry (O1-form symmetryO)

Recall that ", # $, and $" and the composition $" y $ bt into the diagram

a X U $% v $is roughly 3-dimensionaltu2-gauge theory

In an invertible p ,"gmodule % the self-domain wall $° y $
is multiplication by 3-dimensional I,-gauge theory
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Now supposer is a 4d QFT with a left p , " ¢gstructure, and assume given an isomorphism

#: !D,,

Example: is U1 gauge theory with coupling constant$
has Bip, symmetry from jp, " U,
is U; gauge theory with coupling constant${4
# is S-duality which sends$ #« 1{$
Set$ 02 «1

We do not use details of the gauge theory beyond itﬁ:uz symmetry
Then the duality defect ! : F is a Osquare rootO of 3d1, gauge theory
Theorem: No such square root exists

Conclusion: The gauge theoryF is not trivially gapped



Notes from a set of four summer school lectures on this topic are at
https://web.ma.utexas.edu/users/dafr/Freed _perim.pdf
and (very soon) on the Global Categorical Symmetries website:
https://scgcs.berkeley.edu/2022-school/
The latter has lecture notes on related topics and there are more resources at:

https://scgcs.berkeley.edu/



