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Symmetry in QFT

Motivating idea for this talk:

Separate out the abstract structure of symmetry
from its concrete manifestations as actions

or representations



Symmetry in QFT is a big topic; the framework discussed here only scratches the surface

The framework we present applies toÞnite symmetries, analogous toÞnite group symmetry

It includes Þnite Òhomotopical symmetriesÓ, such as higher groups, 2-groups, . . .

Our framework makes clear the topological character of symmetry, we exhibit some
phenomena that can occur, and we review a bit of recent work from this viewpoint

Details appear in lecture notes on the collaboration website and in a forthcoming paper

Many current results about extended notions of symmetry in QFT: Apruzzi, Bah, Benini,
Bhardwaj, Bonetti , Bullimore, C«ordova, Choi, Cvetiÿc, Del Zotto, Dumitrescu, Gaiotto ,
Garc«õa Etxebarria, Gould, Gukov, Heckman, Heidenreich, Hopkins, Hosseini, Hsin, H¬ubner,
Intriligator , Ji, Jian, Johnson-Freyd, Jordan, Kaidi , Kapustin , Komargodski, Lake, Lam,
McNamara, Minasian, Montero, Ohmari, Pantev, Pei, Plavnik , Reece, Robbins,
Roumpedakis, Rudelius, Sch¬afer-Nameki, Scheimbauer, Seiberg, Seifnashri, Shao, Sharpe,
Tachikawa, Thorngren, Torres, Vandermeulen, Wang, Wen, Willett , . . . , . . . , . . .
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Motivation: algebras

Abstract symmetry data (for algebras) is a pair pA, Rq:

A algebra

R right regular module

DeÞnition: Let V be a vector space. AnpA, Rq-action on V is a pair pL, ! q consisting of a
left A-module L together with an isomorphism of vector spaces

! : R b A L Ð!! „ V

R allows us to recover the vector space underlyingLÑa bit pedantic here; crucial later

Elements of A act on all modules; relations inA apply (e.g. Casimirs in Upgq)

Analogy:
algebra ããã ! topological Þeld theory

element of algebraããã ! defect in TFT
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Example: Let G be a Þnite group. Its group algebra is

CrGs Ò

#
Ø

gPG

! g g

+

, ! g PC

Identify CrGs ÒFunpGq; convolution product is pushforward under

mult : G ö G ! „ G

Higher Example: Vect Ò category of Þnite dimensional complex vector spaces. DeÞne
VectrGs as the linear category (Vect-module) of vector bundles overG
with tensor product pushforward under mult. It is a fusion category
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Quotients: augmentations

DeÞnition: An augmentation of an algebraA is an algebra homomorphism! : A „ C.

Use ! to give a right A-module structure to C: " ¬a Ò "! paq, " PC

Example: A Ò CrGs: ! : CrGs! „ C
Ø

gPG

" gg "!„
Ø

gPG

" g

The ÒquotientÓ of a leftA-module L is the vector space

Q Ò C b A L Ò C b ! L

Example: A Ò CrGs, S a Þnite G-set, L Ò CxSy: then Q Ò C b A CxSy Ð CxS{Gy

Augmentations for higher algebras: ! tensor category ! : ! „ Vect Þber functor
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Projective symmetries

Quantum theory is projective, not linear : pure states form a projective space

The ÒprojectivityÓ of a theory is encoded in an (Õt Hooft)anomaly

Symmetries are also projectiveÑin our present context the algebraA includes projectivity

Example: Projective representation ofG is linear represention ofG! in a central extension

1 ! „ Cö ! „ G! ! „ G ! „ 1

Isomorphism class of extensionr! s PH 2pG; Cö q Module over twisted group algebra:

A! Ò
ˆ

gPG

L !
g

An augmentation " : A! „ C splits the extension, so does not existif r! s ä 0
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Field theory

Analogy: Þeld theory ã module over an algebra ORã representation of a Lie group

Warning: This analogy is quite limited

Segal Axiom System: A (Wick-rotated) Þeld theory F is a linear representation of a
bordism (multi)category BordnpF q

n dimension of spacetime

F background Þelds (orientation, Riemannian metric, . . . )

Fully local theory for topological theories; full locality in principle for general theories

Kontsevich -Segal: Axioms for 2-tier nontopological theory F : Bordxn« 1,nypF q „ t Vect
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Domain walls, boundary theories, defects

! , ! 1, ! 2 pn ` 1q-dimensional theories

" : ! 1 „ ! 2 domain wall

#: ! „ right boundary theory

rF : „ ! left boundary theory

The ÒsandwichÓ# b ! rF is an (absolute) n-dimensional theory

More generally, one can putdefectson any (stratiÞed) manifold D ! M
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Composition laws; invertibility

â Given two Þeld theoriesF1, F2 on the same domainBordnpF q, there is a composition
F1 b F2. The composition law is sometimes calledstacking. There is a unit for the
composition law

â There is also a composition law on parallel defects, for example the OPE on point
defects. In a topological theory one obtains a higher algebra of defects.

So a notion of invertible Þeld theory and invertible defect
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Main deÞnition: abstract symmetry data

Fix a dimension n and background ÞeldsF (which we keep implicit)

DeÞnition: Finite Þeld-theoretic symmetry data of dimensionn is a pair p! , " q in which
! is an pn ` 1q-dimensional topological Þeld theory and " is a topological
right ! -module.

Example: Let G be a Þnite group. Then for aG-symmetry we let ! be Þnite gauge
theory in dimension n ` 1. Note this is the quantum theory which sums over
principal G-bundles

Regular " : SupposeC1 is a symmetric monoidal n-category and ! is an pn ` 1q-
dimensional topological Þeld theory with codomainC Ò AlgpC1q. Let
A Ò ! pptq. Then A is an algebra inC1 which, as an object inC, is pn ` 1q-
dualizable. Assume that the right regular moduleAA is n-dualizable as a
1-morphism in C. Then the boundary theory " determined by AA is the
right regular boundary theory of ! , or the right regular ! -module.

A regular boundary theory is also calledDirichlet
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Main deÞnition: concrete realization of symmetry

Let ! be an pn ` 1q-dimensional topological Þeld theory and let" be a right ! -module.

DeÞnition: A p! , " q-module structure on an n-dimensional Þeld theoryF is a pair prF , #q
in which rF is a left ! -module and # is an isomorphism

#: " b !
rF Ð!! „ F

of absoluten-dimensional theories.

â The theory F and so the boundary theory rF may be topological or nontopological

â The sandwich picture of F as " b ! rF separates out the topological partp! , " q of the
theory from the potentially nontopological part rF of the theory.

â Symmetry persists under renormalization group ßow, hence a low energy
approximation to F should also be anp! , " q-module. If F is gapped, thenwe can bring
to bear powerful methods and theorems in topological Þeld theory to investigate
topological left ! -modules. This leads to dynamical predictions
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Example: quantum mechanics with G-symmetry

n Ò 1

F { orientation, Riemannian metric} for F and rF

H Hilbert space

H Hamiltonian

G

š

H Þnite group

S: G „ Aut pH q action on H

! pptq CrGs

F pptq H

rF pptq CrGsH (left module)

Evaluation of some bordisms: (a) the left module CrGsH

(b) e« ! H {! : CrGsH ! „ CrGsH

(c) the central function g "!„ Tr H

`
Spgqe« ! H {! ù

on G
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Example: gauge theory with BA -symmetry

n any dimension

A Þnite abelian groupA Ò /µ2

BA a homotopical/shifted A (Ò1-formA-symmetryÓ)

H Lie group with A ! Z pH q H Ò SU2

H Ò H {A H Ò SO3

F H -gauge theory

rF H -gauge theory

A quotient construction allows to recover absoluteH -gauge theory as a sandwich (later)
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Defects: quantum mechanics

n Ò 1

H Hilbert space

H Hamiltonian

G

š

H Þnite group

Consider a point defect inF . The link of a point in a 1-manifold (imaginary time) is S0, a
0-sphere of radius! , and the vector space of defects is

lim!"
! „ 0

Hom
`
1, F pS0

! q
ù

which is a space of singular operators onH . To focus on formal aspects we write ÔEndpH qÕ

We mow consider defects inp" , #, rF q which transport to point defects in F
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Point ! -defects

The link is a closed interval with ! -colored boundary. It evaluates underp" , ! q to the vector
spaceA Ò CrGs. The ÒlabelÓ of the defect is therefore an element ofA. Note G ! A labels
invertible defects.

! -defects are topological



Point rF -defects

The link is again a closed interval, but now with rF -colored boundary. The value
under p! , rF q is EndA pH q, the space of observables that commute with theG-action

rF -defects are typically not topological



Point ! -defects: central defects

The link is S1, and the value under ! is the vector space which is the center of the group
algebra A Ò CrGs.

! -defects are topological



The general point defect

A general point defect in F can be realized by a line defect inp! , " , rF q.

Label the defect beginning with the highest dimensional strata and work down in dimension

B pA, A q-bimodule

# vector in B

T pA, A q-bimodule map B ! „ EndpH q



Composition law on defects

Compute using the links of the defectsÑ2 incoming and 1 outgoing

! -defects: pair of pants

" -defects: pair of chaps



Commutation relations among defects

The sandwich realization makes clear that
â ! -defects (symmetries) commute with rF -defects
â " -defects (central symmetries) commute with both! -defects and with rF -defects

However, ! -defects do not necessarily commute with each other

Nor do they commute with the general defect
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Finite group symmetries of an pn Ò 2q-dimensional theory

Let G be a Þnite group, and let! be the 3-dimensional ÞniteG-gauge theory

! : Bord3 ! „ AlgpCatq

with ! pptq ÒVectrGs, and let " be the regular right ! -module with " pptq ÒVectrGsVect rGs

Line " -defects are labeled by objects in VectrGs; elementsg PG label invertible defects

Line ! -defects are central, in fact labeled by elements of! pS1q ÒVectGpGq, the Drinfeld
center of the fusion category VectrGs

As opposed toG-symmetry in n Ò 1, here the center is ÒbiggerÓ
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Quotients and quotient defects

We use the yoga of fully local topological Þeld theory: letC1 be a symmetric monoidal
n-category and setC Ò AlgpC1q, the pn ` 1q-category whose objects are algebras inC1

DeÞnition: An augmentation !A : A „ 1 of an algebraA P AlgpC1q is an algebra homo-
morphism from A to the tensor unit 1 PC

DeÞnition: Let F be a collection of pn ` 1q-dimensional Þelds, and suppose
" : Bordn` 1pF q „ C is a topological Þeld theory. A right boundary the-
ory ! for " is an augmentation of " if ! pptq is an augmentation of " pptq

Augmentations are also calledNeumann boundary theories

Augmentations do not always exist
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DeÞnition: Suppose given Þnite symmetry datap! , " q and a p! , " q-module structure
prF , #q on a quantum Þeld theory F . Suppose$ is an augmentation of ! .
Then the quotient of F by the symmetry ! is

F
!

L
! Ò $b " rF



Dirichlet-to-Neumann and Neumann-to-Dirichlet domain walls

The categories of domain walls! „ " and " „ ! are each free of rank one; let

# : ! ! „ "

#û : " ! „ !

be generators. Transporting via$ we obtain domain walls

# : F ! „ F
L
%

#û : F
L
%! „ F

We will soon compute the self-domain wall

#û ý #: F ! „ F
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Quotient defects (after Roumpedakis ÐSeifnashri ÐShao arXiv:2204.02407 )

Passing fromF to F
L
! on a manifold M places the topological defect" on all of M

There is also aquotient defect"pZ qÑit is a #-defectÑsupported on a submanifold Z ! M ,
deÞned using a tubular neighborhood$ of Z ! M . It is topological, as are all#-defects

If codimM pZ q Ò1, then
"pZ qÒ %û ý %
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Computation for Þnite homotopy theories

Finite homotopy theories are a special class of topological Þeld theories, introduced in 1988
by Kontsevich, picked up a few years later byQuinn, developed byTuraev, . . .

They are associated to a! -Þnite topological spaceX (possibly equipped with a ÒcocycleÓ)

They occur often in this context as " Ò " X, e.g., for X Ò BG or X Ò B p` 1A or extensions

B 2A ! „ X ! „ BG

DefectsÑin particular quotient defectsÑcan be made explicit and computations are easy.
Here is the composition#û ý #, essentially a Þnite homotopy theory based on! X:

! X

!! ""
û

## ""

û

!! $$
û

!

""

X

"

%%

û

!

!!
X

! X

## &&
û

!

&&

û

!

##
X
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Duality defects (after C«ordova ÐChoi ÐHsin ÐLam ÐShao arXiv:2111.01139 )

I conclude with an applicationÑsymmetry used to constrain dynamics via:

If a gapped theoryFUV has ap! , " q-module structure, then the low energy topological
Þeld theory approximationFIR should also have ap! , " q-module structure

p! , " q

š

FUV

p! , " q

š

FIR

RG ßow

We will prove in a particular example that there does not exist a topological left
! -module ÷# such that # :Ò " b ! ÷# is invertible. Therefore, FUV cannot ßow to an invertible
Þeld theory, i.e., is not Òtrivially gappedÓ

It follows that A :Ò ! pptq does not admit an augmentation (Õt Hooft anomaly)

Warning: To apply to the following example, ! here includes the duality defect!
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Duality defect

! n ` 1-dimensional topological Þeld theory

" right regular ! -module

# augmentation of ! : ÒinvertibleÓ right! -module

rF left ! -module

F n-dimensional QFT " b ! rF

F
L
! n-dimensional QFT #b ! rF

Suppose there is an isomorphism$ : F
L
! Ð!! „ F . Recall %: F „ F

L
!

DeÞnition: The duality defect ! is the self-domain wall

! Ò $ ý %: F ! „ F

Computation: ! û ý ! Ò p$%qûp$%q Ò%û$û$%Ò %û ý %since$û Ò $« 1 ($ is invertible)
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Example

Let n Ò 4 and let ! be the 5-dimensional Þnite homotopy theory built from X Ò B 2
/µ2

This models B/µ2
-symmetry (Ò1-form symmetryÓ)

Recall that " , #, $, and $û and the composition $û ý $ Þt into the diagram

! X
!! ""

û
## ""

û
!! $$

û

!
""

X
"

%%

û

!
!!

X

$û ý $ is roughly 3-dimensional /µ2
-gauge theory

In an invertible p! , " q-module %, the self-domain wall $û ý $
is multiplication by 3-dimensional /µ2

-gauge theory
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Now supposeF is a 4d QFT with a left p! , " q-structure, and assume given an isomorphism

# : F
L
! Ð!! „ F

Example: F is U1 gauge theory with coupling constant$
F has B/µ2

symmetry from /µ2
" U1

F
L
! is U1 gauge theory with coupling constant${4

# is S-duality which sends$ #„ « 1{$
Set $ Ò 2

?
« 1

We do not use details of the gauge theory beyond itsB/µ2
symmetry

Then the duality defect ! : F „ F is a Òsquare rootÓ of 3d/µ2
gauge theory

Theorem: No such square root exists

Conclusion: The gauge theoryF is not trivially gapped
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Notes from a set of four summer school lectures on this topic are at

https://web.ma.utexas.edu/users/dafr/Freed perim.pdf

and (very soon) on the Global Categorical Symmetries website:

https://scgcs.berkeley.edu/2022-school/

The latter has lecture notes on related topics and there are more resources at:

https://scgcs.berkeley.edu/


