Finite Symmetry in Field Theory

Dan Freed University of Texas at Austin

July 12, 2022

Joint work with Greg Moore and Constantin Teleman

Global Categorical Symmetry

Categorical Symmetry

Symmetry in QFT

Motivating idea for this talk:

Separate out the abstract structure of symmetry from its concrete manifestations as actions or representations

The framework we present applies to *finite* symmetries, analogous to *finite* group symmetry

The framework we present applies to *finite* symmetries, analogous to *finite* group symmetry

It includes finite "homotopical symmetries", such as higher groups, 2-groups, ...

The framework we present applies to *finite* symmetries, analogous to *finite* group symmetry

It includes finite "homotopical symmetries", such as higher groups, 2-groups, ...

Our framework makes clear the topological character of symmetry, we exhibit some phenomena that can occur, and we review a bit of recent work from this viewpoint

The framework we present applies to *finite* symmetries, analogous to *finite* group symmetry

It includes finite "homotopical symmetries", such as higher groups, 2-groups, ...

Our framework makes clear the topological character of symmetry, we exhibit some phenomena that can occur, and we review a bit of recent work from this viewpoint

Details appear in lecture notes on the collaboration website and in a forthcoming paper

The framework we present applies to *finite* symmetries, analogous to *finite* group symmetry

It includes finite "homotopical symmetries", such as higher groups, 2-groups, ...

Our framework makes clear the topological character of symmetry, we exhibit some phenomena that can occur, and we review a bit of recent work from this viewpoint

Details appear in lecture notes on the collaboration website and in a forthcoming paper

Many current results about extended notions of symmetry in QFT: Apruzzi, Bah, Benini, Bhardwaj, Bonetti, Bullimore, Córdova, Choi, Cvetič, Del Zotto, Dumitrescu, Gaiotto, García Etxebarria, Gould, Gukov, Heckman, Heidenreich, Hopkins, Hosseini, Hsin, Hübner, Intriligator, Ji, Jian, Johnson-Freyd, Jordan, Kaidi, Kapustin, Komargodski, Lake, Lam, McNamara, Minasian, Montero, Ohmari, Pantev, Pei, Plavnik, Reece, Robbins, Roumpedakis, Rudelius, Schäfer-Nameki, Scheimbauer, Seiberg, Seifnashri, Shao, Sharpe, Tachikawa, Thorngren, Torres, Vandermeulen, Wang, Wen, Willett, ..., ..., ...

Abstract symmetry data (for algebras) is a pair (A, R):

- A algebra
- R right regular module

Definition: Let V be a vector space. An (A, R)-action on V is a pair (L, θ) consisting of a left A-module L together with an isomorphism of vector spaces

 $\theta \colon R \otimes_A L \overset{\cong}{\longrightarrow} V$

•		
R	A	L

Abstract symmetry data (for algebras) is a pair (A, R):

- A algebra
- R right regular module

Definition: Let V be a vector space. An (A, R)-action on V is a pair (L, θ) consisting of a left A-module L together with an isomorphism of vector spaces

 $\theta \colon R \otimes_A L \xrightarrow{\cong} V$

R allows us to recover the vector space underlying L—a bit pedantic here; crucial later

Abstract symmetry data (for algebras) is a pair (A, R):

- A algebra
- R right regular module

Definition: Let V be a vector space. An (A, R)-action on V is a pair (L, θ) consisting of a left A-module L together with an isomorphism of vector spaces

 $\theta \colon R \otimes_A L \xrightarrow{\cong} V$

R allows us to recover the vector space underlying L—a bit pedantic here; crucial later Elements of A act on all modules; relations in A apply (e.g. Casimirs in $U(\mathfrak{g})$)

Abstract symmetry data (for algebras) is a pair (A, R):

- A algebra
- R right regular module

Definition: Let V be a vector space. An (A, R)-action on V is a pair (L, θ) consisting of a left A-module L together with an isomorphism of vector spaces

 $\theta \colon R \otimes_A L \xrightarrow{\cong} V$

R allows us to recover the vector space underlying L—a bit pedantic here; crucial laterElements of A act on all modules; relations in A apply (e.g. Casimirs in $U(\mathfrak{g})$)Analogy:algebra $\sim \sim \triangleright$ topological field theory
element of algebra $\sim \sim \triangleright$ defect in TFT

Example: Let G be a finite group. Its group algebra is

$$\mathbb{C}[G] = \left\{ \sum_{g \in G} \lambda_g \, g \right\}, \qquad \lambda_g \in \mathbb{C}$$

Identify $\mathbb{C}[G] = \operatorname{Fun}(G)$; convolution product is pushforward under

 $\operatorname{mult} \colon G \times G \longrightarrow G$

Example: Let G be a finite group. Its group algebra is

$$\mathbb{C}[G] = \left\{ \sum_{g \in G} \lambda_g \, g \right\}, \qquad \lambda_g \in \mathbb{C}$$

Identify $\mathbb{C}[G] = \overline{\operatorname{Fun}(G)}$; convolution product is pushforward under

 $\mathrm{mult} \colon G \times G \longrightarrow G$

Higher Example: Vect = category of finite dimensional complex vector spaces. Define Vect[G] as the linear category (Vect-module) of vector bundles over G with tensor product pushforward under mult. It is a *fusion category*

Definition: An augmentation of an algebra A is an algebra homomorphism $\epsilon \colon A \to \mathbb{C}$. Use ϵ to give a right A-module structure to \mathbb{C} : $\lambda \cdot a = \lambda \epsilon(a), \lambda \in \mathbb{C}$

Definition: An augmentation of an algebra A is an algebra homomorphism $\epsilon \colon A \to \mathbb{C}$. Use ϵ to give a right A-module structure to \mathbb{C} : $\lambda \cdot a = \lambda \epsilon(a), \lambda \in \mathbb{C}$

Example: $A = \mathbb{C}[G]$:

 $\epsilon \colon \mathbb{C}[G] \longrightarrow \mathbb{C}$ $\sum_{g \in G} \lambda_g g \longmapsto \sum_{g \in G} \lambda_g$

Definition: An augmentation of an algebra A is an algebra homomorphism $\epsilon \colon A \to \mathbb{C}$. Use ϵ to give a right A-module structure to \mathbb{C} : $\lambda \cdot a = \lambda \epsilon(a), \lambda \in \mathbb{C}$

Example: $A = \mathbb{C}[G]$:

The "quotient" of a left A-module L is the vector space

 $Q = \mathbb{C} \otimes_A L = \mathbb{C} \otimes_\epsilon L$

Definition: An *augmentation* of an algebra A is an algebra homomorphism $\epsilon \colon A \to \mathbb{C}$. Use ϵ to give a right A-module structure to \mathbb{C} : $\lambda \cdot a = \lambda \epsilon(a), \lambda \in \mathbb{C}$

Example: $A = \mathbb{C}[G]$: $\epsilon : \mathbb{C}[G] \longrightarrow \mathbb{C}$ $\sum_{g \in G} \lambda_g g \longmapsto \sum_{g \in G} \lambda_g$

The "quotient" of a left A-module L is the vector space

 $Q = \mathbb{C} \otimes_A L = \mathbb{C} \otimes_{\epsilon} L$

Example: $A = \mathbb{C}[G], S$ a finite G-set, $L = \mathbb{C}\langle S \rangle$: then $Q = \mathbb{C} \otimes_A \mathbb{C}\langle S \rangle \cong \mathbb{C}\langle S/G \rangle$

Definition: An *augmentation* of an algebra A is an algebra homomorphism $\epsilon \colon A \to \mathbb{C}$. Use ϵ to give a right A-module structure to \mathbb{C} : $\lambda \cdot a = \lambda \epsilon(a), \lambda \in \mathbb{C}$

Example: $A = \mathbb{C}[G]$: $\epsilon : \mathbb{C}[G] \longrightarrow \mathbb{C}$ $\sum_{g \in G} \lambda_g g \longmapsto \sum_{g \in G} \lambda_g$

The "quotient" of a left A-module L is the vector space

 $Q = \mathbb{C} \otimes_A L = \mathbb{C} \otimes_{\epsilon} L$

Example: $A = \mathbb{C}[\overline{G}], S$ a finite G-set, $L = \mathbb{C}\langle S \rangle$: then $Q = \mathbb{C} \otimes_A \mathbb{C}\langle S \rangle \cong \mathbb{C}\langle S/G \rangle$

Augmentations for higher algebras: Φ tensor category $\epsilon: \Phi \rightarrow Vect$ fiber functor

Quantum theory is *projective*, not *linear*: pure states form a projective space

Quantum theory is *projective*, not *linear*: pure states form a projective space

The "projectivity" of a theory is encoded in an ('t Hooft) anomaly

Quantum theory is *projective*, not *linear*: pure states form a projective space

The "projectivity" of a theory is encoded in an ('t Hooft) anomaly

Symmetries are also projective—in our present context the algebra A includes projectivity

Quantum theory is *projective*, not *linear*: pure states form a projective space The "projectivity" of a theory is encoded in an ('t Hooft) anomaly Symmetries are also projective—in our present context the algebra A includes projectivity **Example:** Projective representation of G is linear representation of G^{τ} in a central extension

 $1 \longrightarrow \mathbb{C}^{\times} \longrightarrow G^{\tau} \longrightarrow G \longrightarrow 1$

Isomorphism class of extension $[\tau] \in H^2(G; \mathbb{C}^{\times})$

Module over twisted group algebra:

 $A^{\tau} = \bigoplus_{q \in C} L_g^{\tau}$

Quantum theory is *projective*, not *linear*: pure states form a projective space The "projectivity" of a theory is encoded in an <u>('t Hooft) anomaly</u> Symmetries are also projective—in our present context the algebra A includes projectivity **Example:** Projective representation of G is linear represention of G^{τ} in a central extension

 $1 \longrightarrow \mathbb{C}^{\times} \longrightarrow G^{\tau} \longrightarrow G \longrightarrow 1$

Isomorphism class of extension $[\tau] \in H^2(G; \mathbb{C}^{\times})$ Module over twisted group algebra:

 $A^{\tau} = \bigoplus_{g \in G} L_g^{\tau}$

An augmentation $\epsilon: A^{\tau} \to \mathbb{C}$ splits the extension, so <u>does not exist</u> if $[\tau] \neq 0$

Analogy: field theory \sim module over an algebra OR \sim representation of a Lie group

Warning: This analogy is quite limited

Analogy: field theory \sim module over an algebra OR \sim representation of a Lie group

Warning: This analogy is quite limited

 $\xrightarrow{F} F(Y)$

 \mathcal{F}

Segal Axiom System: A (Wick-rotated) field theory F is a linear representation of a bordism (multi)category $\operatorname{Bord}_n(\mathcal{F})$

- *n* dimension of spacetime
 - background fields (orientation, Riemannian metric, \dots)

 $X \xrightarrow{F} \left(F(X) : F(Y_1) \otimes F(Y_2) \otimes F(Y_3) \rightarrow C \right)$

Analogy: field theory \sim module over an algebra OR \sim representation of a Lie group

Warning: This analogy is quite limited

Segal Axiom System: A (Wick-rotated) field theory F is a linear representation of a bordism (multi)category $\operatorname{Bord}_n(\mathcal{F})$

- *n* dimension of spacetime
- \mathcal{F} background fields (orientation, Riemannian metric, ...)

Fully local theory for topological theories; full locality in principle for general theories

Analogy: field theory \sim module over an algebra OR \sim representation of a Lie group

Warning: This analogy is quite limited

Segal Axiom System: A (Wick-rotated) field theory F is a linear representation of a bordism (multi)category $\operatorname{Bord}_n(\mathcal{F})$

- *n* dimension of spacetime
- \mathcal{F} background fields (orientation, Riemannian metric, ...)

Fully local theory for *topological* theories; full locality in principle for general theories **Kontsevich-Segal:** Axioms for 2-tier nontopological theory $F: \operatorname{Bord}_{\langle n-1,n \rangle}(\mathcal{F}) \to t$ Vect

- $\sigma, \sigma_1, \sigma_2$ $\delta: \sigma_1 \to \sigma_2$ $\rho: \sigma \to \mathbb{1}$ $\widetilde{F}: \mathbb{1} \to \sigma$
- (n+1)-dimensional theories
- σ_2 domain wall
 - right boundary theory
 - left boundary theory

 $\begin{aligned} &\sigma, \sigma_1, \sigma_2 \\ &\delta \colon \sigma_1 \to \sigma_2 \\ &\rho \colon \sigma \to \mathbb{1} \\ &\widetilde{F} \colon \mathbb{1} \to \sigma \end{aligned}$

- (n+1)-dimensional theories
- domain wall (
 - right boundary theory
 - left boundary theory

 (σ_2, σ_1) -bimodule right σ -module left σ -module

$\sigma, \sigma_1, \sigma_2$	(n+1)-dimensional theories	
$\delta: \sigma_1 \to \sigma_2$	domain wall	(σ_2, σ_1) -bimodule
$\rho \colon \ \sigma \to \mathbb{1}$	right boundary theory	right σ -module
$\widetilde{F} \colon \mathbb{1} \to \sigma$	left boundary theory	left σ -module

The "sandwich" $\rho \otimes_{\sigma} \widetilde{F}$ is an (absolute) *n*-dimensional theory

$\sigma, \sigma_1, \sigma_2$	(n+1)-dimensional theories	
$\delta: \ \sigma_1 \to \sigma_2$	domain wall	(σ_2, σ_1) -bimodule
$\rho \colon \ \sigma \to \mathbb{1}$	right boundary theory	right σ -module
$\widetilde{F}\colon \mathbb{1}\to \sigma$	left boundary theory	left σ -module

The "sandwich" $\rho \otimes_{\sigma} \widetilde{F}$ is an (absolute) *n*-dimensional theory

More generally, one can put *defects* on any (stratified) manifold $D \subset M$

Composition laws; invertibility

• Given two field theories F_1, F_2 on the same domain $\operatorname{Bord}_n(\mathcal{F})$, there is a composition $F_1 \otimes F_2$. The composition law is sometimes called *stacking*. There is a unit 1 for the composition law
Composition laws; invertibility

- Given two field theories F_1, F_2 on the same domain $\operatorname{Bord}_n(\mathcal{F})$, there is a composition $F_1 \otimes F_2$. The composition law is sometimes called *stacking*. There is a unit 1 for the composition law
- There is also a composition law on parallel defects, for example the OPE on point defects. In a topological theory one obtains a higher algebra of defects.

Composition laws; invertibility

- Given two field theories F_1, F_2 on the same domain $\operatorname{Bord}_n(\mathcal{F})$, there is a composition $F_1 \otimes F_2$. The composition law is sometimes called *stacking*. There is a unit 1 for the composition law
- There is also a composition law on parallel defects, for example the OPE on point defects. In a topological theory one obtains a higher algebra of defects.

So a notion of *invertible* field theory and *invertible* defect

Fix a dimension n and background fields \mathcal{F} (which we keep implicit)

Definition: Finite field-theoretic symmetry data of dimension n is a pair (σ, ρ) in which σ is an (n + 1)-dimensional topological field theory and ρ is a topological right σ -module.

Fix a dimension n and background fields \mathcal{F} (which we keep implicit)

Definition: Finite field-theoretic symmetry data of dimension n is a pair (σ, ρ) in which σ is an (n + 1)-dimensional topological field theory and ρ is a topological right σ -module.

Example: Let G be a finite group. Then for a G-symmetry we let σ be finite gauge theory in dimension n + 1. Note this is the *quantum* theory which sums over principal G-bundles

Fix a dimension n and background fields \mathcal{F} (which we keep implicit)

- **Definition:** Finite field-theoretic symmetry data of dimension n is a pair (σ, ρ) in which σ is an (n + 1)-dimensional topological field theory and ρ is a topological right σ -module.
- **Example:** Let G be a finite group. Then for a G-symmetry we let σ be finite gauge theory in dimension n + 1. Note this is the *quantum* theory which sums over principal G-bundles
- **Regular** ρ : Suppose \mathcal{C}' is a symmetric monoidal *n*-category and σ is an (n + 1)dimensional topological field theory with codomain $\mathcal{C} = \operatorname{Alg}(\mathcal{C}')$. Let $A = \sigma(\operatorname{pt})$. Then A is an algebra in \mathcal{C}' which, as an object in \mathcal{C} , is (n+1)dualizable. Assume that the right regular module A_A is *n*-dualizable as a 1-morphism in \mathcal{C} . Then the boundary theory ρ determined by A_A is the right regular boundary theory of σ , or the right regular σ -module.

Fix a dimension n and background fields \mathcal{F} (which we keep implicit)

- **Definition:** Finite field-theoretic symmetry data of dimension n is a pair (σ, ρ) in which σ is an (n + 1)-dimensional topological field theory and ρ is a topological right σ -module.
- **Example:** Let G be a finite group. Then for a G-symmetry we let σ be finite gauge theory in dimension n + 1. Note this is the *quantum* theory which sums over principal G-bundles
- **Regular** ρ : Suppose \mathcal{C}' is a symmetric monoidal *n*-category and σ is an (n + 1)dimensional topological field theory with codomain $\mathcal{C} = \operatorname{Alg}(\mathcal{C}')$. Let $A = \sigma(\operatorname{pt})$. Then A is an algebra in \mathcal{C}' which, as an object in \mathcal{C} , is (n + 1)dualizable. Assume that the right regular module A_A is *n*-dualizable as a 1-morphism in \mathcal{C} . Then the boundary theory ρ determined by A_A is the right regular boundary theory of σ , or the right regular σ -module.

A regular boundary theory is also called *Dirichlet*

Let σ be an (n + 1)-dimensional topological field theory and let ρ be a right σ -module. **Definition:** A (σ, ρ) -module structure on an n-dimensional field theory F is a pair (\tilde{F}, θ) in which \tilde{F} is a left σ -module and θ is an isomorphism

$$\theta\colon\rho\otimes_{\sigma}\widetilde{F}\overset{\cong}{\longrightarrow}F$$

of absolute n-dimensional theories.

Let σ be an (n + 1)-dimensional topological field theory and let ρ be a right σ -module. **Definition:** A (σ, ρ) -module structure on an n-dimensional field theory F is a pair (\tilde{F}, θ) in which \tilde{F} is a left σ -module and θ is an isomorphism

$$\theta\colon\rho\otimes_{\sigma}\widetilde{F}\overset{\cong}{\longrightarrow}F$$

of absolute n-dimensional theories.

• The theory F and so the boundary theory \widetilde{F} may be topological or nontopological

Let σ be an (n + 1)-dimensional topological field theory and let ρ be a right σ -module. **Definition:** A (σ, ρ) -module structure on an n-dimensional field theory F is a pair (\tilde{F}, θ) in which \tilde{F} is a left σ -module and θ is an isomorphism

$$\theta\colon\rho\otimes_{\sigma}\widetilde{F}\stackrel{\cong}{\longrightarrow} F$$

of absolute *n*-dimensional theories.

- The theory F and so the boundary theory \widetilde{F} may be topological or nontopological
- The sandwich picture of F as $\rho \otimes_{\sigma} \widetilde{F}$ separates out the topological part (σ, ρ) of the theory from the potentially nontopological part \widetilde{F} of the theory.

Let σ be an (n + 1)-dimensional topological field theory and let ρ be a right σ -module. **Definition:** A (σ, ρ) -module structure on an n-dimensional field theory F is a pair (\tilde{F}, θ) in which \tilde{F} is a left σ -module and θ is an isomorphism

$$\theta\colon\rho\otimes_{\sigma}\widetilde{F}\stackrel{\cong}{\longrightarrow} F$$

of absolute n-dimensional theories.

- The theory F and so the boundary theory \widetilde{F} may be topological or nontopological
- The sandwich picture of F as $\rho \otimes_{\sigma} \widetilde{F}$ separates out the topological part (σ, ρ) of the theory from the potentially nontopological part \widetilde{F} of the theory.
- Symmetry persists under renormalization group flow, hence a low energy approximation to F should also be an (σ, ρ) -module. If F is gapped, then we can bring to bear powerful methods and theorems in topological field theory to investigate topological left σ -modules. This leads to dynamical predictions

Example: guantum mechanics with G-symmetry

 \mathcal{F} \mathcal{H} H $G \cap \mathcal{H}$ $S: G \to \operatorname{Aut}(\mathcal{H})$ $\sigma(\text{pt})$ F(pt) $\widetilde{F}(\mathrm{pt})$

n = 1

{orientation, Riemannian metric} for F and \widetilde{F} Hilbert space Hamiltonian 5 finite group action on \mathcal{H} $\mathbb{C}[G]$ \mathcal{H} $\mathbb{C}[G]$ \mathcal{H} (left module)

Example: quantum mechanics with G-symmetry

n = 1 \mathcal{F} H H $G \cap \mathcal{H}$ $S: G \to \operatorname{Aut}(\mathcal{H})$ $\sigma(\text{pt})$ F(pt) $\widetilde{F}(\mathrm{pt})$

{orientation, Riemannian metric} for F and \tilde{F} Hilbert space Hamiltonian finite group 7 action on \mathcal{H} $\mathbb{C}[G]$ (a) \mathcal{H} (6) $\mathbb{C}[G]$ \mathcal{H} (left module)

Evaluation of some bordisms:

(a) the left module $_{\mathbb{C}[G]}\mathcal{H}$ (b) $e^{-\tau H/\hbar}$: $_{\mathbb{C}[G]}\mathcal{H} \longrightarrow _{\mathbb{C}[G]}\mathcal{H}$ (c) the central function $g \longmapsto \operatorname{Tr}_{\mathcal{H}}(S(g)e^{-\tau H/\hbar})$ on G

57

(c)

Example: gauge theory with BA-symmetry

n A BA H $\overline{H} = H/A$ F

any dimension finite abelian group $A = \mu_2$ a homotopical/shifted A ("1-form A-symmetry") Lie group with $A \subset Z(H)$ $H = SU_2$ $\overline{H} = SO_3$ H-gauge theory \overline{H} -gauge theory

Example: gauge theory with *BA*-symmetry

```
any dimension
```

```
finite abelian group A = \mu_2
```

a homotopical/shifted A ("1-form A-symmetry")

```
Lie group with A \subset Z(H) H = SU_2
```

```
\overline{H} = \overline{H}/A \overline{H} = \mathrm{SO}_3
```

A

BA

H

H-gauge theory

 \overline{H} -gauge theory

A quotient construction allows to recover absolute \overline{H} -gauge theory as a sandwich (later)

Defects: quantum mechanics

n = 1 \mathcal{H} Hilbert space H Hamiltonian $G \subseteq \mathcal{H}$ finite group

Defects: quantum mechanics

n = 1 \mathcal{H} Hilbert space H Hamiltonian

 $G \subseteq \mathcal{H}$ finite group

S° (H)

Consider a point defect in F. The link of a point in a 1-manifold (imaginary time) is S^0 , a 0-sphere of radius ϵ , and the vector space of defects is

 $\varprojlim_{\epsilon \to 0} \operatorname{Hom} \left(1, F(S^0_\epsilon) \right)$

which is a space of singular operators on \mathcal{H} . To focus on formal aspects we write 'End(\mathcal{H})'

Defects: quantum mechanics

n = 1 \mathcal{H} Hilbert space H Hamiltonian $G \cap \mathcal{H}$ finite group

Consider a point defect in F. The link of a point in a 1-manifold (imaginary time) is S^0 , a 0-sphere of radius ϵ , and the vector space of defects is

 $\lim_{\epsilon \to 0} \operatorname{Hom}(1, F(S^0_{\epsilon}))$

which is a space of singular operators on \mathcal{H} . To focus on formal aspects we write 'End(\mathcal{H})'

We mow consider defects in $(\rho, \sigma, \widetilde{F})$ which transport to point defects in F

Point ρ -defects

The link is a closed interval with ρ -colored boundary. It evaluates under (σ, ρ) to the vector space $A = \mathbb{C}[G]$. The "label" of the defect is therefore an element of A. Note $G \subset A$ labels invertible defects.

 $\rho\text{-defects}$ are topological

Point \tilde{F} -defects

The link is again a closed interval, but now with \tilde{F} -colored boundary. The value under (σ, \tilde{F}) is $\operatorname{End}_A(\mathfrak{H})$, the space of observables that commute with the *G*-action

 \widetilde{F} -defects are typically not topological

Point σ -defects: central defects

The link is S^1 , and the value under σ is the vector space which is the center of the group algebra $A = \mathbb{C}[G]$.

 σ -defects are topological

The general point defect

A general point defect in F can be realized by a line defect in $(\rho, \sigma, \tilde{F})$.

Label the defect beginning with the highest dimensional strata and work down in dimension

- B (A, A)-bimodule
- $\boldsymbol{\xi}$ vector in B
- $T \qquad (A, A)\text{-bimodule map } B \longrightarrow \text{End}(\mathcal{H})$

Composition law on defects

Compute using the links of the defects—2 incoming and 1 outgoing σ -defects: pair of pants

 $\rho\text{-defects:}$ pair of chaps

Commutation relations among defects

The sandwich realization makes clear that

- ρ -defects (symmetries) commute with \widetilde{F} -defects
- σ -defects (central symmetries) commute with both ρ -defects and with \widetilde{F} -defects

Commutation relations among defects

The sandwich realization makes clear that

- ρ -defects (symmetries) commute with \widetilde{F} -defects
- σ -defects (central symmetries) commute with both ρ -defects and with \widetilde{F} -defects

However, ρ -defects do not necessarily commute with each other

Commutation relations among defects

The sandwich realization makes clear that

- ρ -defects (symmetries) commute with \widetilde{F} -defects
- σ -defects (central symmetries) commute with both ρ -defects and with \widetilde{F} -defects

However, ρ -defects do not necessarily commute with each other

Nor do they commute with the general defect

Finite group symmetries of an (n = 2)-dimensional theory

Let G be a finite group, and let σ be the 3-dimensional finite G-gauge theory

 $\sigma \colon \operatorname{Bord}_3 \longrightarrow \operatorname{Alg}(\operatorname{Cat})$

with $\sigma(\text{pt}) = \text{Vect}[G]$, and let ρ be the regular right σ -module with $\rho(\text{pt}) = \text{Vect}[G]_{\text{Vect}[G]}$

Finite group symmetries of an (n = 2)-dimensional theory Let G be a finite group, and let σ be the 3-dimensional finite G-gauge theory

 $\sigma \colon \operatorname{Bord}_3 \longrightarrow \operatorname{Alg}(\operatorname{Cat})$

with $\sigma(\text{pt}) = \text{Vect}[G]$, and let ρ be the regular right σ -module with $\rho(\text{pt}) = \text{Vect}[G]_{\text{Vect}[G]}$ Line ρ -defects are labeled by objects in Vect[G]; elements $q \in G$ label invertible defects

Finite group symmetries of an (n = 2)-dimensional theory

Let G be a finite group, and let σ be the 3-dimensional finite G-gauge theory

 $\sigma \colon \operatorname{Bord}_3 \longrightarrow \operatorname{Alg}(\operatorname{Cat})$

with $\sigma(\text{pt}) = \text{Vect}[G]$, and let ρ be the regular right σ -module with $\rho(\text{pt}) = \text{Vect}[G]_{\text{Vect}[G]}$

Line ρ -defects are labeled by objects in Vect[G]; elements $g \in G$ label invertible defects

Line σ -defects are central, in fact labeled by elements of $\sigma(S^1) = \operatorname{Vect}_G(G)$, the Drinfeld center of the fusion category $\operatorname{Vect}[G]$

Finite group symmetries of an (n = 2)-dimensional theory Let G be a finite group, and let σ be the 3-dimensional finite G-gauge theory

 $\sigma \colon \operatorname{Bord}_3 \longrightarrow \operatorname{Alg}(\operatorname{Cat})$

with $\sigma(\text{pt}) = \text{Vect}[G]$, and let ρ be the regular right σ -module with $\rho(\text{pt}) = \text{Vect}[G]_{\text{Vect}[G]}$

Line ρ -defects are labeled by objects in Vect[G]; elements $g \in G$ label invertible defects

Line σ -defects are central, in fact labeled by elements of $\sigma(S^1) = \operatorname{Vect}_G(G)$, the Drinfeld center of the fusion category $\operatorname{Vect}[G]$

As opposed to G-symmetry in n = 1, here the center is "bigger"

We use the yoga of fully local topological field theory: let \mathcal{C}' be a symmetric monoidal *n*-category and set $\mathcal{C} = \operatorname{Alg}(\mathcal{C}')$, the (n + 1)-category whose objects are algebras in \mathcal{C}'

We use the yoga of fully local topological field theory: let \mathfrak{C}' be a symmetric monoidal *n*-category and set $\mathfrak{C} = \operatorname{Alg}(\mathfrak{C}')$, the (n + 1)-category whose objects are algebras in \mathfrak{C}'

Definition: An augmentation $\epsilon_A \colon A \to 1$ of an algebra $A \in Alg(\mathbb{C}')$ is an algebra homomorphism from A to the tensor unit $1 \in \mathbb{C}$

We use the yoga of fully local topological field theory: let \mathfrak{C}' be a symmetric monoidal *n*-category and set $\mathfrak{C} = \operatorname{Alg}(\mathfrak{C}')$, the (n + 1)-category whose objects are algebras in \mathfrak{C}'

Definition: An augmentation $\epsilon_A \colon A \to 1$ of an algebra $A \in Alg(\mathcal{C}')$ is an algebra homomorphism from A to the tensor unit $1 \in \mathcal{C}$

Definition: Let \mathcal{F} be a collection of (n + 1)-dimensional fields, and suppose σ : Bord_{n+1}(\mathcal{F}) $\rightarrow \mathfrak{C}$ is a topological field theory. A right boundary theory ϵ for σ is an *augmentation* of σ if ϵ (pt) is an augmentation of σ (pt)

Augmentations are also called *Neumann boundary theories*

We use the yoga of fully local topological field theory: let \mathcal{C}' be a symmetric monoidal *n*-category and set $\mathcal{C} = \operatorname{Alg}(\mathcal{C}')$, the (n + 1)-category whose objects are algebras in \mathcal{C}'

Definition: An augmentation $\epsilon_A \colon A \to 1$ of an algebra $A \in Alg(\mathcal{C}')$ is an algebra homomorphism from A to the tensor unit $1 \in \mathcal{C}$

Definition: Let \mathcal{F} be a collection of (n + 1)-dimensional fields, and suppose $\sigma: \operatorname{Bord}_{n+1}(\mathcal{F}) \to \mathfrak{C}$ is a topological field theory. A right boundary theory ϵ for σ is an *augmentation* of σ if $\epsilon(\operatorname{pt})$ is an augmentation of $\sigma(\operatorname{pt})$

Augmentations are also called Neumann boundary theories

Augmentations do not always exist

Definition: Suppose given finite symmetry data (σ, ρ) and a (σ, ρ) -module structure (\tilde{F}, θ) on a quantum field theory F. Suppose ϵ is an augmentation of σ . Then the *quotient* of F by the symmetry σ is

$$F_{\epsilon}/\sigma = \epsilon \otimes_{\sigma} \widetilde{F}$$

Dirichlet-to-Neumann and Neumann-to-Dirichlet domain walls

The categories of domain walls $\rho \to \epsilon$ and $\epsilon \to \rho$ are each free of rank one; let

 $\delta : \rho \longrightarrow \epsilon$ $\delta^* \colon \epsilon \longrightarrow \rho$

be generators. Transporting via θ we obtain domain walls

 $\delta : F \longrightarrow F/\sigma$ $\delta^* \colon F/\sigma \longrightarrow F$

Dirichlet-to-Neumann and Neumann-to-Dirichlet domain walls

 $\delta : \rho \longrightarrow \epsilon$ $\delta^* \colon \epsilon \longrightarrow \rho$

The categories of domain walls $\rho \to \epsilon$ and $\epsilon \to \rho$ are each free of rank one; let

be generators. Transporting via θ we obtain domain walls

 $\begin{array}{ccc} \delta : & F & \longrightarrow F/\sigma \\ \delta^* \colon F/\sigma \longrightarrow F \end{array}$

We will soon compute the self-domain wall

 $\delta^* \circ \delta \colon F \longrightarrow F$
Quotient defects (after Roumpedakis-Seifnashri-Shao arXiv:2204.02407)

Passing from F to F/σ on a manifold M places the topological defect ϵ on all of M

Quotient defects (after Roumpedakis-Seifnashri-Shao arXiv: 2204.02407)

Passing from F to \overline{F}/σ on a manifold M places the topological defect ϵ on all of M

There is also a quotient defect $\epsilon(Z)$ —it is a ρ -defect—supported on a submanifold $Z \subset M$, defined using a tubular neighborhood ν of $Z \subset M$. It is topological, as are all ρ -defects

Quotient defects (after Roumpedakis-Seifnashri-Shao arXiv: 2204.02407)

Passing from \overline{F} to \overline{F}/σ on a manifold M places the topological defect ϵ on all of M

There is also a quotient defect $\epsilon(Z)$ —it is a ρ -defect—supported on a submanifold $Z \subset M$, defined using a tubular neighborhood ν of $Z \subset M$. It is topological, as are all ρ -defects

If $\operatorname{codim}_M(Z) = 1$, then

 $\epsilon(Z) = \delta^* \circ \delta$

Finite homotopy theories are a special class of topological field theories, introduced in 1988 by Kontsevich, picked up a few years later by Quinn, developed by Turaev, ...

Finite homotopy theories are a special class of topological field theories, introduced in 1988 by Kontsevich, picked up a few years later by Quinn, developed by Turaev, ...

They are associated to a π -finite topological space \mathfrak{X} (possibly equipped with a "cocycle")

Finite homotopy theories are a special class of topological field theories, introduced in 1988 by Kontsevich, picked up a few years later by Quinn, developed by Turaev, ...

They are associated to a π -finite topological space \mathfrak{X} (possibly equipped with a "cocycle")

They occur often in this context as $\sigma = \sigma_{\chi}$, e.g., for $\chi = BG$ or $\chi = B^{p+1}A$ or extensions $B^2A \longrightarrow \chi \longrightarrow BG$

Finite homotopy theories are a special class of topological field theories, introduced in 1988 by Kontsevich, picked up a few years later by Quinn, developed by Turaev, ...

They are associated to a π -finite topological space \mathfrak{X} (possibly equipped with a "cocycle")

They occur often in this context as $\sigma = \sigma_{\chi}$, e.g., for $\chi = BG$ or $\chi = B^{p+1}A$ or extensions $B^2A \longrightarrow \chi \longrightarrow BG$

Defects—in particular quotient defects—can be made explicit and computations are easy. Here is the composition $\delta^* \circ \delta$, essentially a finite homotopy theory based on $\Omega \mathfrak{X}$:

I conclude with an application—symmetry used to constrain dynamics via:

If a gapped theory $F_{\rm UV}$ has a (σ, ρ) -module structure, then the low energy topological field theory approximation $F_{\rm IR}$ should also have a (σ, ρ) -module structure

I conclude with an application—symmetry used to constrain dynamics via:

If a gapped theory $F_{\rm UV}$ has a (σ, ρ) -module structure, then the low energy topological field theory approximation $F_{\rm IR}$ should also have a (σ, ρ) -module structure

$$(\sigma,
ho) \bigcirc F_{\mathrm{UV}}$$

 \downarrow RG flow

 $(\sigma,
ho) \bigcirc F_{\mathrm{IR}}$

We will prove in a particular example that there does not exist a *topological* left σ -module $\tilde{\lambda}$ such that $\lambda := \rho \otimes_{\sigma} \tilde{\lambda}$ is invertible. Therefore, $F_{\rm UV}$ cannot flow to an invertible field theory, i.e., is not "trivially gapped"

I conclude with an application—symmetry used to constrain dynamics via:

If a gapped theory $F_{\rm UV}$ has a (σ, ρ) -module structure, then the low energy topological field theory approximation $F_{\rm IR}$ should also have a (σ, ρ) -module structure

$$(\sigma,
ho) \, \bigcirc \, F_{
m UV} \ iggreen
ightarrow
ightarrow
m RG \ {
m flow} \ (\sigma,
ho) \, \bigcirc \, F_{
m IR}$$

We will prove in a particular example that there does not exist a *topological* left σ -module $\tilde{\lambda}$ such that $\lambda := \rho \otimes_{\sigma} \tilde{\lambda}$ is invertible. Therefore, $F_{\rm UV}$ cannot flow to an invertible field theory, i.e., is not "trivially gapped"

It follows that $A := \sigma(pt)$ does not admit an augmentation ('t Hooft anomaly)

I conclude with an application—symmetry used to constrain dynamics via:

If a gapped theory $F_{\rm UV}$ has a (σ, ρ) -module structure, then the low energy topological field theory approximation $F_{\rm IR}$ should also have a (σ, ρ) -module structure

We will prove in a particular example that there does not exist a *topological* left σ -module $\tilde{\lambda}$ such that $\lambda := \rho \otimes_{\sigma} \tilde{\lambda}$ is invertible. Therefore, $F_{\rm UV}$ cannot flow to an invertible field theory, i.e., is not "trivially gapped"

It follows that $A := \sigma(pt)$ does not admit an augmentation ('t Hooft anomaly)

Warning: To apply to the following example, σ here includes the duality defect Δ

 $\begin{array}{ll} \sigma & n+1 \text{-dimensional topological field theory} \\ \rho & \text{right regular } \sigma \text{-module} \\ \text{augmentation of } \sigma \text{: "invertible" right } \sigma \text{-module} \\ \widetilde{F} & \text{left } \sigma \text{-module} \\ F & n \text{-dimensional QFT } \rho \otimes_{\sigma} \widetilde{F} \\ F/\sigma & n \text{-dimensional QFT } \epsilon \otimes_{\sigma} \widetilde{F} \end{array}$

 $\begin{array}{ll} \sigma & n+1 \text{-dimensional topological field theory} \\ \rho & \text{right regular } \sigma \text{-module} \\ \epsilon & \text{augmentation of } \sigma \text{: "invertible" right } \sigma \text{-module} \\ \widetilde{F} & \text{left } \sigma \text{-module} \\ F & n \text{-dimensional QFT } \rho \otimes_{\sigma} \widetilde{F} \\ F / \sigma & n \text{-dimensional QFT } \epsilon \otimes_{\sigma} \widetilde{F} \\ \end{array}$

Suppose there is an isomorphism $\phi \colon F/\sigma \xrightarrow{\cong} F$. Recall $\delta \colon F \to F/\sigma$

 $\begin{array}{ll} \sigma & n+1 \text{-dimensional topological field theory} \\ \rho & \text{right regular } \sigma \text{-module} \\ \epsilon & \text{augmentation of } \sigma \text{: "invertible" right } \sigma \text{-module} \\ \widetilde{F} & \text{left } \sigma \text{-module} \\ F & n \text{-dimensional QFT } \rho \otimes_{\sigma} \widetilde{F} \\ F / \sigma & n \text{-dimensional QFT } \epsilon \otimes_{\sigma} \widetilde{F} \\ \end{array}$

Suppose there is an isomorphism $\phi \colon F/\sigma \xrightarrow{\cong} F$. Recall $\delta \colon F \to F/\sigma$

Definition: The *duality defect* Δ is the self-domain wall

 $\Delta = \phi \circ \delta \colon F \longrightarrow F$

 $\begin{array}{ll} \sigma & n+1 \text{-dimensional topological field theory} \\ \rho & \text{right regular } \sigma \text{-module} \\ \epsilon & \text{augmentation of } \sigma \text{: "invertible" right } \sigma \text{-module} \\ \widetilde{F} & \text{left } \sigma \text{-module} \\ F & n \text{-dimensional QFT } \rho \otimes_{\sigma} \widetilde{F} \\ F / \sigma & n \text{-dimensional QFT } \epsilon \otimes_{\sigma} \widetilde{F} \\ \end{array}$

Suppose there is an isomorphism $\phi \colon F/\sigma \xrightarrow{\cong} F$. Recall $\delta \colon F \to F/\sigma$

Definition: The *duality defect* Δ is the self-domain wall

 $\Delta = \phi \circ \delta \colon F \longrightarrow F$

Computation: $\Delta^* \circ \Delta = (\phi \delta)^* (\phi \delta) = \delta^* \phi^* \phi \delta = \delta^* \circ \delta$ since $\phi^* = \phi^{-1}$ (ϕ is invertible)

Let n = 4 and let σ be the 5-dimensional finite homotopy theory built from $\mathfrak{X} = B^2 \mu_{2}$

Let n = 4 and let σ be the 5-dimensional finite homotopy theory built from $\mathfrak{X} = B^2 \mu_2$

This models B_{μ_2} -symmetry ("1-form symmetry")

Let n = 4 and let σ be the 5-dimensional finite homotopy theory built from $\mathfrak{X} = B^2 / \mu_2$ This models B / μ_2 -symmetry ("1-form symmetry")

Recall that ρ , ϵ , δ , and δ^* and the composition $\delta^* \circ \delta$ fit into the diagram

Let n = 4 and let σ be the 5-dimensional finite homotopy theory built from $\mathfrak{X} = B^2 / \mu_2$ This models B / μ_2 -symmetry ("1-form symmetry")

Recall that ρ , ϵ , δ , and δ^* and the composition $\delta^* \circ \delta$ fit into the diagram

In an invertible (σ, ρ) -module λ , the self-domain wall $\delta^* \circ \delta$ is multiplication by 3-dimensional μ_2 -gauge theory

$$\phi \colon F/\sigma \xrightarrow{\cong} F$$

$$\phi\colon F/\sigma \xrightarrow{\cong} F$$

Example: F is U₁ gauge theory with coupling constant τ F has B/μ_2 symmetry from $/\mu_2 \subset U_1$ F/σ is U₁ gauge theory with coupling constant $\tau/4$ ϕ is S-duality which sends $\tau \mapsto -1/\tau$ Set $\tau = 2\sqrt{-1}$

$$\phi\colon F/\sigma \xrightarrow{\cong} F$$

Example: F is U₁ gauge theory with coupling constant τ F has B/μ_2 symmetry from $\mu_2 \subset U_1$ F/σ is U₁ gauge theory with coupling constant $\tau/4$ ϕ is S-duality which sends $\tau \mapsto -1/\tau$ Set $\tau = 2\sqrt{-1}$

We do not use details of the gauge theory beyond its $B\mu_2$ symmetry

$$\phi\colon F/\sigma \xrightarrow{\cong} F$$

Example: F is U₁ gauge theory with coupling constant τ F has B/μ_2 symmetry from $\mu_2 \subset U_1$ F/σ is U₁ gauge theory with coupling constant $\tau/4$ ϕ is S-duality which sends $\tau \mapsto -1/\tau$ Set $\tau = 2\sqrt{-1}$

We do not use details of the gauge theory beyond its $B\mu_{2}$ symmetry

Then the duality defect $\Delta \colon F \to F$ is a "square root" of 3d μ_2 gauge theory

$$\phi\colon F/\sigma \xrightarrow{\cong} F$$

Example: F is U₁ gauge theory with coupling constant τ F has B/μ_2 symmetry from $\mu_2 \subset U_1$ F/σ is U₁ gauge theory with coupling constant $\tau/4$ ϕ is S-duality which sends $\tau \mapsto -1/\tau$ Set $\tau = 2\sqrt{-1}$

We do not use details of the gauge theory beyond its $B\mu_2$ symmetry

Then the duality defect $\Delta \colon F \to F$ is a "square root" of 3d μ_{α} gauge theory

Theorem: No such square root exists

$$\phi\colon F/\sigma \xrightarrow{\cong} F$$

Example: F is U₁ gauge theory with coupling constant τ F has B/μ_2 symmetry from $\mu_2 \subset U_1$ F/σ is U₁ gauge theory with coupling constant $\tau/4$ ϕ is S-duality which sends $\tau \mapsto -1/\tau$ Set $\tau = 2\sqrt{-1}$

We do not use details of the gauge theory beyond its $B\mu_{2}$ symmetry

Then the duality defect $\Delta \colon F \to F$ is a "square root" of 3d μ_{α} gauge theory

Theorem: No such square root exists

Conclusion: The gauge theory F is not trivially gapped

Notes from a set of four summer school lectures on this topic are at https://web.ma.utexas.edu/users/dafr/Freed_perim.pdf and (very soon) on the Global Categorical Symmetries website: https://scgcs.berkeley.edu/2022-school/ The latter has lecture notes on related topics and there are more resources at: https://scgcs.berkeley.edu/