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A relativistic electron in the Coulomb potential is described by the

Dirac-Coulomb Hamiltonian
3∑
j=1

αjpj + βm− λ

|x|
,

acting on spinor-valued functions on R3. Here αi, β are Dirac matrices.

It is tricky and often ambiguous to interpret this expression as a self-adjoint

operator. Physical properties, e.g. eigenvalues depend on the choice of a

self-adjoint realization.



The usual approach to unbounded Hermitian operators is to find a domain

on which they are essentially self-adjoint. Then our operator extends to

a unique self-adjoint realization. Such an approach works e.g. for the

Schrödinger-Coulomb Hamiltonian

−∆− λ

|x|
,

where the essential self-adjointness on C∞c (R3) follows for any λ ∈ R by

the famous Kato-Rellich Theorem.

The situation is much more complicated for Dirac-Coulomb Hamiltonians.

There exists a very large mathematical literature about self-adjoint realiza-

tions of Dirac-Coulomb Hamiltonians (Kato, Gustaffson-Rejtö, Schmincke,

Wüst, Klaus, Nenciu, Esteban-Loss....)



• Direct application of the Kato-Rellich Theorem yields essential self-

adjointness for |λ| < 1
2.

• More refined methods extend this to |λ| ≤
√
3
2 .

• For
√
3
2 < |λ| essential self-adjointness breaks down.

– For
√
3
2 < |λ| < 1 there are two distinguished self-adjoint realizations,

one of them “more physical”.

– For |λ| = 1 there is only one distinguished s.a. realization.

– For |λ| > 1 there are no distinguished s.a. realizations.



I would like to describe an approach to Dirac-Coulomb Hamiltonians that

in my opinion clarifies the concept of a “distinguished self-adjoint realiza-

tion”, based on my recent work with Błażej Ruba. The key elements of our

approach are the homogeneity and the holomorphy.

First note that the mass term is bounded and thus does not change the

domain of self-adjoint realizations and can be dropped.

Note also that dimension d = 3 is not important, and we can consider

the Dirac-Coulomb Hamiltonian in any dimension
d∑
i=1

αipi −
λ

|x|
.



The d-dimensional Dirac-Coulob Hamiltonian commutes with

β
(∑

i<j

αiαj(xipj − xjpi) +
d− 1

2

)
,

which is essentially the Dirac operator on the sphere Sd−1. Its eigenvalues

are

±ω ∈ {0, 1, 2, . . . } +
d− 1

2
.

Thus after separation of angular variables we obtain the

1-dimensional Dirac-Coulomb Hamiltonian

Dω,λ :=

[
−λ+ω

x −∂x
∂x −λ−ω

x

]
.

Henceforth we will analyze Dω,λ as an operator on L2(R+,C2). We will

allow ω, λ to be complex.



The theory of the Dirac-Coulomb Hamiltonian is closely related to the

Whittaker equation (related to the confluent hypergeometric equation)(
− ∂2z +

(
m2 − 1

4

) 1

z2
− β

z
+

1

4

)
g = 0.

There are two kinds of Whittaker functions, which are its solutions

Iβ,m(z) ' z
1
2+m

Γ(1 + 2m)
, z → 0;

Kβ,m(z) ' zβe−
z
2 , z → +∞.

For |Re
√
ω2 − λ2| ≥ 1

2 the operator Dω,λ has only one closed realisa-

tion (this will be explained later). In particular, if ω, λ are real, then it is

essentially self-adjoint on C∞c (R+,C2). It is homogeneous of degree −1.



Let k ∈ C\R and consider the resolvent of the Dirac-Coulomb Hamilto-

nian (Dω,λ − k)−1. Its integral kernel can be computed:

Gω,λ(k;x, y) = −θ(y − x)ξ±ω,λ(k, x)ζ±ω,λ(k, y)T

−θ(x− y)ζ±ω,λ(k, x)ξ±ω,λ(k, y)T, k ∈ C±;

ξ±ω,λ(k, x) =
Γ(1 + µ∓ iλ)

2µ(ω − λ∓ iµ)

(
∓ iωI±iλ,µ+1

2
(∓2ikx)

[
ω − λ
µ

]

+ I±iλ,µ−1
2
(∓2ikx)

[
ω − λ
−µ

])
,

ζ±ω,λ(k, x) =
ωK±iλ,µ+1

2
(∓2ikx)

µ(ω − λ± iµ)

[
ω − λ
µ

]

+
(λ∓ iµ)K±iλ,µ−1

2
(∓2ikx)

µ(ω − λ± iµ)

[
ω − λ
−µ

]
.

where µ :=
√
ω2 − λ2.



Let us try to understand what happens in the region |Re
√
ω2 − λ2| < 1

2.

To this end, we check that the space of zero energy eigenfunctions of Dω,λ

is spanned by
xµ

ω + λ

[
−µ
ω + λ

]
,

x−µ

ω + λ

[
µ

ω + λ

]
,

with µ2 = ω2− λ2. Both eigenfunctions are square integrable near 0 if and

only if |Re
√
ω2 − λ2| < 1

2.

One can introduce the maximal domain of Dω,λ:

Dmax
ω,λ := {f ∈ L2 : Dω,λf ∈ L2},

and the minimal domain Dmin
ω,λ , which is the closure of Cc in the graph norm

of Dω,λ. Clearly, Dmin
ω,λ ⊂ Dmax

ω,λ .



One can show the following

Lemma. If |Re
√
ω2 − λ2| ≥ 1

2, then D
min
ω,λ = Dmax

ω,λ ,

If |Re
√
ω2 − λ2| < 1

2, then dimDmax
ω,λ /Dmin

ω,λ = 2.

Thus in the region |Re
√
ω2 − λ2| < 1

2 we have the following closed

realizations of Dω,λ: the minimal, maximal and a one-parameter family

given by the following boundary conditions near zero depending on κ ∈
C ∪ {∞}:

' xµ

ω + λ

[
−µ
ω + λ

]
+ κ

x−µ

ω + λ

[
µ

ω + λ

]
.



Let us go back to the region |Re
√
ω2 − λ2| ≥ 1

2, whereDω,λ has a unique

closed realization, whose resolvent we computed in terms of Whittaker func-

tions. It is easy to see that this resolvent can be analytically continued in

ω, λ inside the region |Re
√
ω2 − λ2| < 1

2. Thus we obtain an analytic

family of Dirac-Coulomb Hamiltonians.

This family cannot be unambiguously parametrized by ω, λ, because of

two square roots of

µ2 = ω2 − λ2.

One can try to parametrize it by the set{
(ω, λ, µ) : µ2 = ω2 − λ2, Reµ > −1

2

}
,

but there is still a problem at (ω, λ, µ) = (0, 0, 0), where the above manifold

has a singularity.



The correct parameter space involves blowing-up this singularity. It is an

everywhere holomorphic manifold, denotedM−1
2
, and can be described as

follows:{
(ω, λ, µ, [a : b]) ∈ C3 × CP1 |

[
ω + λ µ

µ ω − λ

][
a

b

]
=

[
0

0

]
, Reµ > −1

2

}
.

Thus we obtain a holomorphic family of homogeneous Dirac-Coulomb

HamilitoniansM−1
2
3 p 7→ Dp. The elements of this family have homo-

geneous boundary conditions ' xµ.



Parameter manifoldM−1
2
. Regions colored yellow, blue and red are de-

scribed by inequalities µ > 1
2, 0 < µ < 1

2 and −1
2 < µ < 0, respectively.



On the next slide we show the phase diagram of operators Dω,λ for

(ω, λ) ∈ R2. We distinguish the following phases marked with different

colors and letters:

A
1

4
≤ ω2 − λ2,

B 0 < ω2 − λ2 < 1

4
,

C ω = ±λ, (ω, λ) 6= (0, 0),

D (ω, λ) = (0, 0),

E ω2 − λ2 < 0.





Let Uτf (x) = e
τ
2f (eτx) be the scaling transformation. The map

A 7→ eτUτAU−τ

will be called the renormalization group. Operators homogeneous of degree

−1, such as the homogeneous Dirac-Coulomb Hamiltonians, are fixed points

of this transformation.



The spectrum of self-adjoint homogeneous Dirac-Coulomb Hamiltonians

is always R. They can be diagonalized with help of two Møller operators

U±p :L2(R+,C2)→ L2(R),

(U±p Dpf )(k) = k(U±p f )(k), k ∈ R.

They can be derived from long-range scattering theory and are unitary for

self-adjoint Dp. The two choices ± correspond to the incoming and outgo-

ing waves. They are linked by the scattering amplitude

U+
p = e−iεkπµSp U−p ,

Sp =
(ω − λ + iµ)Γ(1 + µ− iλ)

(ω − λ− iµ)Γ(1 + µ + iλ)
, εk := sgn(k).



One can explicitly express the Møller operators in terms of the generator

of dilations A := 1
2(xp + px) and the hypergeometric function:

Ξ±p (εk, s) :=
i∓εkµ−

3
2−µ+is2µ−1Γ(1 + µ∓ iλ)

µ(z ± i)

×

(
2εkωΓ

(
3

2
+ µ− is

)
2F1 (1 + µ + iεkλ, 32 + µ− is; 2µ + 2; 2 + i0)

[
−z
1

]

+ i Γ

(
1

2
+ µ− is

)
2F1 (µ + iεkλ, 12 + µ− is; 2µ; 2 + i0)

[
z

1

])
,

U±p =
e
1
2εkπλ

√
π

Ξ±Tp (εk, A)J,

z = − µ

ω + λ
= −ω − λ

µ
, (Jf )(k) =

1

k
f
(1

k

)
.



U±p can be extended analytically to complex ω, λ. However it stays

bounded only for real λ. More precisely

U±p (1 + A2)−
1
2|Im(λ)|

is bounded.

This is an expression of the fact that the angular momentum perturbation

involving ω is effectively short range unlike the Coulomb potential multiplied

by λ, which is long range (even though both decay as 1
r).



A similar picture for the Bessel operator

Lα = −∂2x +
(
− 1

4
+ α
) 1

x2
.

In particular, here is the phase diagram of its self-adjoint extensions:

K—Krein, F—Friedrichs, dashed line—single bound state, dotted line—

infinite sequence of bound states.



MESSAGES:

1. There may be problems with strongly charged ions.

2. Boundary conditions can be tricky.

3. Homogeneous objects have special properties.

4. It is useful to organize things in holomorphic families.

5. Simple mathematical objects may have unexpected “phase transitions”.

THANK YOU FOR YOUR ATTENTION


