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History, part 1: 1990’s

I Candellas-de la Ossa-Green-Parkes ’92: Enumerative Mirror
Symmetry (EMS)

Computed the sequence

2875, 609250, 317206375, 242467530000, 229305888887625, . . .

of Gromov-Witten invariants of genus 0, degree d of a quintic
Calabi-Yau threefold X .

I This computation was done by identifying these numbers with
the coefficients of a solution of the Picard-Fuchs equation
which governs the variation of Hodge structures on the family
of mirror quintics X̌ψ.
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History, part 1: 1990’s (cont’d)

I Kontsevich 1994: Homological Mirror Symmetry (HMS)
There exists a mirror map ψ ↔ ρ such that

Db
coh(X̌ψ) ∼= Fuk(X , ρ).

Here ρ is a parameter in the Novikov ring, roughly
parametrizing the volume of the symplectic form.

I Kontsevich’s (implied) conjecture:

Homological MS ⇒ Enumerative MS
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Intuitive idea

There should exist an invariant F0(C ) (a complex number)
associated to a Calabi-Yau category C (over the complex
numbers).

(More generally, there should be such an invariant Fg (C ) for any
genus g ≥ 0.)

If we compute it for C = Db
coh(X̌ψ) we get a function F0(ψ), which

should be the COGP solution of Picard-Fuchs.

For C = Fuk(X , ρ) we should get the generating series of
Gromov-Witten genus zero invariants.

HMS then implies that under the mirror map ψ ↔ ρ we will have

F0(Db
coh(X̌ψ)) = F0(Fuk(X , ρ))

so the two functions are the same (main statement of EMS).
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Problems

I How to define Fg (C )?

I What do we get for other categories C , for example for matrix
factorization categories MF(X ,W )?

I What is the analogue of a variation of Hodge structure for
g ≥ 1?

I (Insertions) Gromov-Witten theory more generally defines
gravitational descendants

〈τi1(α1), . . . , τin(αn)〉g ,n

for α1, . . . αn ∈ H∗(X ). What is the analogue for C ?

I To make sense of mirror symmetry one needs to choose a
large complex structure limit point. Where does this choice
enter the categorical theory?
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History, part 2: 2000’s

I (Kontsevich-Soibelman, Costello, ∼2000): Explicit
construction

{Smooth cyclic A∞ algebras} ↔ {2d extended TFTs}

It is the homotopy analogue of

{Frobenius algebras} ↔ {2d purely topological TFTs}

I (Costello 2005): Non-explicit construction of

〈τi1(α1), . . . , τin(αn)〉A,sg ,n

for any smooth Calabi-Yau A∞-algebra A, splitting s of the
Hodge filtration of A, and α1, . . . , αn ∈ HH∗(A).

(Construction goes through the extended 2d TFT of A.)
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Cyclic A∞ algebras
A∞-algebras are the homotopy generalization of ordinary algebras,
where we relax the associativity constraint.

A cyclic A∞ algebra A consists of:

– a graded vector space A;
– operations mk : A⊗k → A[2− k] satisfying generalized

associativity axioms;
– a non-degenerate pairing 〈−,−〉 : A⊗2 → C compatible with

multiplications (analogue of pairing of Frobenius algebra.)

Graphically we think of cyclic operations as results of disk
insertions, compatible with disk bubbling.



Cyclic A∞ algebras (cont’d)

How do cyclic A∞ algebras arise?

I Fukaya categories are naturally presented as cyclic A∞.

I For Calabi-Yau variety X and C = Db
coh(X ) we need to

compute A = End(E ) for any generator E .

Done explicitly for X = elliptic curve (Polishchuk).

Recursive procedure for X = hypersurface in Pn (Tu).

I For categories of matrix factorizations we can take the
generator to be kstab, the stabilization of the residue field.
Resulting A∞ algebra computed by Dyckerhoff (special cases),
Tu (homogeneous potential).



New actor: the splitting s

Costello’s invariants require a new ingredient, a splitting of the
Hodge filtration.

Example: If X̌ is an elliptic curve, C = Db
coh(X̌ ), have a natural

short exact sequence

0→ H0(X̌ ,Ω1
X̌

)→ H1
dR(X̌ )→ H1(X̌ ,OX̌ )→ 0.

A splitting of the Hodge filtration for X̌ is a choice of splitting of
this exact sequence.

(This is categorical: the Hochschild to cyclic spectral sequence

1E = HC∗(C )⇒ HH∗(C )[[u]]

degenerates at 1E for any Z-graded A∞ algebra – Kaledin.)
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Splittings (cont’d)

Equivalently, a splitting of the Hodge filtration for an elliptic curve
X̌ is a choice of image of H0,1(X̌ ) in H1

dR(X̌ ).

Similar to Witten’s point of view: for the mirror quintic X̌ we need
to write the symplectic space H3

dR(X̌ ) as a sum of two Lagrangians
L1 ⊕ L2, where L1 = H3,0 ⊕ H2,1, L2 = H1,2 ⊕ H0,3.

In order to compute categorical enumerative invariants we need to
choose this splitting in the whole family X̌ψ, or at least near a large
complex structure limit.
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Choices of splittings

1. (Complex conjugate splitting): Use L2 = L1. It is modular (i.e.,
defined everywhere), but does not vary holomorphically with ψ, so
Fg (Db

coh(X̌ψ)) will not be a holomorphic function of ψ.

For elliptic curve X̌ this corresponds to the familiar decomposition

H1
dR(X̌ ) = 〈dz , dz̄〉.

2. (Monodromy invariant spitting): use monodromy around any of
the special points of the moduli space (large complex structure
points, orbifold points, . . . ) to fix splitting. Varies holomorphically,
not modular.

For elliptic curve with modular parameter τ , around large complex
structure point, this corresponds to the decomposition

H1
dR(X̌ ) = 〈dz , dz − dz̄

τ − τ̄
〉.
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Why do we need the splitting?
Consider the g = 1, n = 1 invariant: M1,1 = P1 = S2.



CEI = GW conjecture

Conjecture (Costello, 2005). For C = Fuk(X , ρ), s = monodromy
invariant splitting around large volume limit point, Costello’s
invariants compute the Gromov-Witten potential of X .

With original definition this is impossible to verify, even for small
examples.

Theorem (C, Costello, Tu, 2020). There exist combinatorial,
explicit formulas for Costello’s invariants. Given a cyclic A∞
algebra A and a splitting s of its Hodge filtration there exists an
explicit algorithm to compute

〈τi1(α1), . . . , τin(αn)〉A,sg ,n.

(Very computationally intensive, almost useless in practice.)

Can now verify Costello’s conjecture for X = T 2 (2-torus) and
g ≤ 2 (soon expected for g ≤ 5).
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The power of using different splittings
All splittings form a torsor over the Givental group. We have
formulas (in terms of summations over stable graphs) for the
action of the Givental group on CEI potentials.



Other computations, future directions

Known results:

I An singularities in g = 0, g = 1: C = MF(A1, xn+1).
Interesting choice of splitting, no monodromy choice.

I String, divisor axioms from GW theory hold for CEIs (work in
progress, Shen-Tu).

Problems of interest:

I Can we distinguish two non-derived equivalent CY threefolds
studied by Aspinwall-Morrison using g = 1 CEIs?

I Computations of CEIs for Kuznetsov components of cubic
fourfolds? Relationship to rationality?
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