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Introduction
Studying the evolution of quantum systems   condensed 
matter, QI, HEP. 

Questions  integrability, chaos, thermalization, OTOC 
Operator growth. 

Chaotic theories  operators become complexified quickly  
faster scrambling of information. 

OTOC  Lyapunov exponent  saturation for chaotic cases. 

Central question  distinguish integrable and chaotic cases.
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Start from a simple local operator  (e.g.; one site 
operator). 

Hamiltonian of the quantum system  Hermitian, time 
independent and a k sites.  

Operator evolution Heisenberg picture  

 

Also treated as Liouvillian evolution  

The iterative action of Liouvillian does not generate 
orthonormal vectors (super operator operator, operator 
state, norm  thermal Wightman products)

O(0)

→

→ →

O(t) = eiHtO(0)e−iHt = O(0) + it[H, O(0)] +
i2t2

2!
[H, [H, O(0)]] + ⋯

O(t) = eitℒO(0), ℒ = [H, ⋅ ]
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→



Algorithm to construct an orthonormal basis Krylov-Lanczos 
algorithm. 

The basis formed  Krylov basis dimension , with 
 the Hilbert space dimension.  

, where  are the basis elements 
and  are called the Lanczos coefficients.  

Liouvillian has a tridiagonal matrix form 

→

→ → 𝒦 ≤ D2 − D + 1
D

ℒ |𝒪n) = bn |𝒪n−1) + bn+1 |𝒪n+1) |𝒪n)
bn

ℒmn = (Om |ℒ |On) ⇒ ℒ =

0 b1 0 ⋯ 0
b1 0 b2 ⋯ 0
0 b2 0 b3 ⋯
⋯ ⋯ b3 ⋯ ⋯
0 ⋯ ⋯ ⋯ bn

0 0 ⋯ bn 0

.



UOGH(Universal operator growth hypothesis)   growth can 
characterise chaos and integrability. (1812.08657, PRX.9.041.017, Parker 
et al) 

General behaviour of  initial growth characterising growing support 
of the operator, then comes down to zero after exploring the whole 
Krylov basis.  

How an operator spreads in the Krylov basis  chaotic evolution the 
initial growth is quickest (linear). 

Coming down to zero, more fluctuations implies integrability. (2112.12128, 
JHEP03(2022)211, Rabinovici et al)   

Level statistics of unfolded spectrum for closed systems: integrable
Poisson, chaotic Wigner-Dyson statistics  match with results from 
Krylov Lanczos algorithm. 
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After Krylov basis is formed , are  

probabilities of finding operator in n-th Krylov basis at time t

. 

Average position of the operator in Krylov space, K-complexity: 

 

K-complexity: grows exponentially for linear growth of , grows 
linearly for saturation of  and saturates for the long time decrease 
of .  

For integrable case, the saturation is at a lower value due to more 
fluctuations in .(2112.12128, Rabinovici et al)  

→ |Ot) =
𝒦−1

∑
n=0

inϕn(t) |𝒪n) |ϕn(t) |2

→
𝒦−1

∑
n=0

|ϕn |2 = 1

C(t) =
𝒦−1

∑
n=0

n |ϕn |2

bn

bn

bn

bn



Open systems and Lindblad 
evolution

Why open systems: pragmatic approach, preparation of ideal 
closed systems is impossible, always some interaction with 
environment. 

Evolution becomes non-unitary. Liouvillian has non-hermitian 
contributions  Lindbladian. 

What happens to operator evolution and integrability in case of 
non-unitary evolution? 

Primary spread of operator always within system degrees of 
freedom.

→



   

 and  are operators in the system, and environment Hilbert space, 
respectively,  coupling. 

We concentrate on the evolution of a density matrix (mixed state in 
general) . 

Assume access to the information of  and  (system info and 

some understanding about the ways it interacts with environment).

HSE = HS ⊗ IE + IS ⊗ HE + HI , HI = ∑
i

αi Si ⊗ Ei

Si Ei

αi

ρS = TrE[ρSE]

HS ∑
i

αiSi



Born-Markovian approximation  Lindblad master equation 

 

Approximations: weak bath-system coupling, bath relaxation 
time<<system relaxation time, factorisability of total density matrix. 

 

Lindbladian is non-hermitian. 

Perform similar steps? Or different? Check both. 

Model: Transverse field Ising model with open BC 

→

·ρ = − i[H, ρ] + ∑
k

[LkρL†
k −

1
2

{L†
k Lk, ρ}] = − iℒoρ(t) .

·O(t) = iℒoO(t), with ℒo[ ∙ ] = [H, ∙ ] − i∑
k

[L†
k ∙ Lk −

1
2

{L†
k Lk, ∙ }] ,

HTFIM = −
N−1

∑
j=1

σz
j σz

j+1 − g
N

∑
j=1

σx
j − h

N

∑
j=1

σz
j .



 nonzero, , integrable, for nonzero , goes away from 
integrability, , maximally away from integrability. 

Level statistics results are there for dissipative open systems: 
integrable  still Poissonian, chaotic complex Ginibre ensemble. 
(1910.03520,  PRL.123.254101, Akemann et al) 

Boundary Lindblad operators 
. 

Bulk dephasing operators  

Eigenvalues are real or come in complex conjugate pairs. 

Level statistics done with complex spacing ratios.

g h = 0 h
g = − 1.05, h = 0.5

→ →

L−1 = α σ+
1 , L0 = α σ−

1 , LN+1 = α σ+
N , LN+2 = α σ−

N

Li = γ σz
i , i = 1,2,⋯, N .



Krylov iteration with Lindbladian

Lanczos: Applying Hermitian methods to a non-
hermitian operator observing the breakdown. 

Orthonormalisation is limited to lower accuracy . 

Growth of  becomes unphysical once non-hermitian 
effects are present (keeps growing forever). 

Integrable and chaotic regimes are not distinguishable 
anymore.

→
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bn





Effect of Lindblad operators (non-hermitian part) can be 
increased two ways, i) increasing the coupling, ii) take bulk 
dephasing at all sites instead of just boundary Lindblad 
operators. 

In both of the cases, the coefficients keep growing forever 
with larger and larger slope (growth rate). 

Can distinguish between different non-hermitian parameters, 
but can not distinguish integrable and chaotic regimes.   

Growing forever does not make sense: the Krylov-Lanczos 
space does not represent the system Hilbert space 
systematically.



Arnoldi iteration
For non-Hermitian case, the natural choice for constructing Krylov basis is 
actually the Krylov-Arnoldi iteration.  

Results in a matrix form of the Lindbladian that is upper Hessenberg  

 

In this case, the Lindbladian acting on a basis vector produces, not just 
contributions from the previous and next basis, but all existing basis vectors 
upto the end of Krylov basis.

ℒ(o) =

h0,0 h0,1 h0,2 ⋯ h0,n

h1,0 h1,1 h1,2 ⋯ h1,n

0 h2,1 h2,2 h2,3 ⋯
⋯ ⋯ h3,2 ⋯ ⋯
0 ⋯ ⋯ ⋯ hn−1,n

0 0 ⋯ hn,n−1 hn,n

.



While applying the algorithm, and constructing  from 
, therefore, one needs to subtract contributions for all 
, with .  

These overlaps with previous elements form the matrix 
elements . 

Questions: 1)Do these coefficients have enough 
information about integrability? 2) Do these coefficients 
have info about non-hermiticity? 

Answers: Affirmative.

|𝒪n+1)
|𝒪n)
|𝒪m) m = 0,1,⋯, n − 1

hm,n



Results
The coefficients , (analogous to ’s) always have 
information about the integrability. 

Mostly insensitive to non-hermiticity  change is very small 
with increasing  (boundary coupling)and (bulk 
dephasing). 

 are always real. So where is the information of 
nonhermiticity of the Lindbladian diagonal elements . 

 are fully imaginary, and are sensitive to  and , 
but are insensitive to integrability.

hn,n−1 bn

→
α γ

hn,n−1

→ hn,n

hn,n = ian α γ



 plotshn,n−1



 plotshn,n



 plotshn,n



Symmetrically placed partner coefficients of  are the 
 coefficients, that were equal for Lanczos are not 

equal anymore

hn,n−1

hn−1,n



Finally, if we plot the  Arnoldi coefficients for very large number 
of n, (we consider N=6, so ), 
we find they go to zero, indicating a full exploration of the Krylov 
space. (For both integrable and chaotic) 

As expected, we find integrable coefficients showing more 
fluctuations later on. 

hn,n−1

D = 26 = 64 and 𝒦 ≤ 46 − 26 + 1 = 4033



Conclusion
Krylov-Lanczos iteration breaks down for open system non-
unitary evolution.  

The forever growing Lanczos coefficients are not able to explain 
systematic exploration of system degrees of freedom and the 
corresponding Krylov basis. 

Krylov-Arnoldi seems to be the right procedure. Two different 
sets of coefficients capture the info about integrability and non-
hermiticity separately. 

Systematic exploration of Krylov basis is regained.



Conclusion
There are other nonzero matrix elements present, however they remain 
of the order of  and do not grow.  

These extra coefficients reflect that probability conservation is violated 

for open systems . 

This is expected since there is either a loss or a gain procedure for an 
open system due to its interaction.

10−2

𝒦−1

∑
n=0

|ϕn(t) |2 ≠ 1



Arnoldi with non-hermitian couplings made zero boils down to 
Lanczos. So the difference between  and  seems to 
spread in the other small nonzero coefficients in the Arnoldi matrix. 

It would be interesting to study non-Hermitian Hamiltonians with 
unitary evolution (PT symmetric systems in PT unbroken phase). 

Computing complexity with full Arnoldi matrix becomes different. 
Following another way of biorthogonalizing the vector space gives 
one more hope of finding a matrix form similar to Lanczos, for which 
complexity computation should be doable. 

It would be interesting to study open QFTs and apply Arnoldi to 
see if the coefficients keep growing due to infinite degrees of 
freedom.

hn,n−1 hn−1,n



Thank you for your attention!


