On topology change in Poisson-Lie T-duality

Alex S. Arvanitakis

STRINGMATH22, Warsaw, Wednesday 13th July 2022

I will mostly talk about [arXiv:2110.08179] [ASA, Chris Blair, Dan Thompson]. It's about changes in the global bundle topology (e.g. trivial to nontrivial) under a nonabelian analogue of T-duality — Poisson-Lie duality.

The result, briefly:

A spacetime which is a principal *bibundle* with Poisson-Lie group fibres is T-dual to another bibundle whose structure group is the PL dual group.

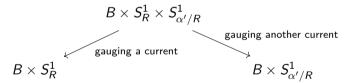
Nonabelian fibres/'isometries': e.g. $S^3 \cong SU(2)$ -bundles dual to $\mathbb{R}^3 \cong SB(2)$ -bundles. (Whereas in T-duality it's just torus bundles.)

Generalisation of topological T-duality to a nonabelian setting, via duality of QP mfolds/Courant/symplectic L_{∞} -algebroids \implies duality of sigma-models.

Recall T-duality: strings on $B \times S^1_R$ dual to strings on $B \times S^1_{\alpha'/R} \implies$ change in geometry (lengths).

How to see T-duality? [Roček Verlinde 91]: if d U(1) isometries, introduce a **doubled** sigma model with d extra scalars; then gauge d currents \implies equivalence of CFTs.

Schematically, for a single isometry:



The logic of this **correspondence** diagram is how various dualities work, including e.g. bosonisation. (For a 2D Dirac fermion, gauge the vector symmetry $\psi \rightarrow \exp(i\theta(x))\psi$ with a flat connection to get the top node/"correspondence space".)

The correspondence picture is abstract. Duality in phase space instead: **Hamiltonian** formulation of Polyakov(–Howe-Tucker) string action (zero *B*-field)

$$S[X, P; e, u] = \int dt \oint d\sigma \ \dot{X}^{\mu} P_{\mu} - e \Big(g^{-1}(P^2) + g(\partial_{\sigma} X^2) \Big) - u(\partial_{\sigma} X^{\mu} P_{\mu}) \, .$$

O(d, d) vector \mathbb{Z}^M transforms nicely under T-duality:

$$\mathbb{Z}^{M} := (\partial_{\sigma} X^{\mu}, P_{\mu}) \quad \rightarrow \quad \mathbb{O}^{M}{}_{N} \mathbb{Z}^{N} =: \widetilde{\mathbb{Z}}^{M}$$

for $\mathbb{O} \in O(d, d)$. For \mathbb{O} that dualises all coordinates, a "canonical transformation" (lagrangian correspondence) [Álvarez Álvarez-Gaumé Lozano 94]

$$P = \partial_{\sigma} \widetilde{X}, \qquad \widetilde{P} = \partial_{\sigma} X,$$

which can be seen "passively" as acting on $\mathcal{H} = \begin{pmatrix} g^{-1} & 0 \\ 0 & g \end{pmatrix} \in O(d,d)/O(d) \times O(d).$

This canonical picture is good enough at least for cylindrical strings.

T-duality with spectators & topological T-duality

Instead of $M = B \times T^d$, could dualise a non-trivial torus bundle $T^d \hookrightarrow M \twoheadrightarrow B$.

New phenomenon: change in topology

 S^3 without *H*-flux $\xrightarrow{\text{T-dual to}}$ $S^2 \times S^1$ with *H*-flux.

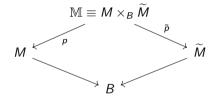
Here S^3 is seen as a bundle $S^1 \hookrightarrow S^3 \twoheadrightarrow S^2$ (Hopf fibration) of Chern class 1. Represent this via curvature F of a U(1) connection (KK photon). **Dual** *H*-flux

$$\widetilde{H} = F \wedge \widetilde{A}, \qquad \widetilde{A} \propto \operatorname{vol}_{S^1}.$$
 (\widetilde{A} the dual KK photon)

Original paper is a formidable patch-wise calculation...

[Bouwknegt Evslin Mathai 03] treat this topology change generally — topological T-duality:

- Principal S^1 -bundle M with H-flux H and Chern class represented by 2-form F.
- T-duality proposed to swap F with the 2-form $\tilde{F} = \int_{S^1} H$ ("momentum \leftrightarrow winding")
- ▶ Class $[\widetilde{F}]$ determines an S^1 bundle \widetilde{M} (by algebraic topology) the dual space.



'correspondence'/'doubled' space (T^2 -bundle)

 $(S^1$ -bundles)

base/'spectators'

Dual H flux determined via

$$H - \widetilde{H} = d(A \wedge \widetilde{A})$$
 on $M imes_B \widetilde{M}$.

Crucial point

Original and dual *H*-fluxes are in the same cohomology class (on \mathbb{M})!

Poisson-Lie T-duality [Klimčík Ševera 95] replaces circles/tori with nonabelian groups.

Naturally understood in the doubled picture. The fibre is a **Drinfeld double** Lie group:

Definition (Drinfeld double)

 \mathbb{D} is a Drinfeld double \iff Lie algebra $\mathfrak{d} = \mathfrak{g} + \widetilde{\mathfrak{g}}$ is a *Manin triple*: has inner product η , so that η restricted to $\mathfrak{g}, \widetilde{\mathfrak{g}}$ is zero. (η is also nondegenerate and has signature O(d, d).)

Structure constants on ϑ totally determined by structure consts. f, \tilde{f} on $\mathfrak{g}, \tilde{\mathfrak{g}}$:

$$[T_{\mathfrak{g}}, T_{\mathfrak{g}}] = fT_{\mathfrak{g}}, \quad [\tilde{T}_{\tilde{\mathfrak{g}}}, \tilde{T}_{\tilde{\mathfrak{g}}}] = \tilde{f} \tilde{T}_{\tilde{\mathfrak{g}}}, \qquad [T_{\mathfrak{g}}, \tilde{T}_{\tilde{\mathfrak{g}}}] = f \tilde{T}_{\tilde{\mathfrak{g}}} - \tilde{f}T_{\mathfrak{g}},$$

PL dual subalgebras \mathfrak{g} and $\tilde{\mathfrak{g}}$ do not commute! I will assume that \mathbb{D} is globally a (non-direct) product, so every $g \in \mathbb{D}$ factorises:

$${f g}=\widetilde{g}g\,,\qquad g\in {\cal G},\quad \widetilde{g}\in \widetilde{{\cal G}}\,.$$

"Nonabelian factorisation" into d-dim Lie subgroups G, \tilde{G} with Lie algebras $\mathfrak{g}, \mathfrak{\tilde{g}}$

Example (The abelian double)

$$\mathbb{D}=\mathcal{T}^{2d}$$
, $\mathcal{G}=\mathcal{T}^d$, $\widetilde{\mathcal{G}}=\mathcal{T}^d$, relevant for usual T-duality.

Sigma models with targets G, \tilde{G} that fit into a Drinfeld double \mathbb{D} can be PLT-dual.

Such G is a **Poisson-Lie group** for Poisson bivector $\Pi^{ab} = -\Pi^{ba}$. Comes from the **adjoint action** of G on the 'dual' Lie algebra \tilde{g} (hence vanishes in the abelian double)

$$\widetilde{T}^a o g \, \widetilde{T}^a g^{-1} \,, \qquad \widetilde{T}^a \in \widetilde{\mathfrak{g}} \,, \quad g \in G.$$

The PL sigma model with target G is then (in lightcone coordinates)

$$S[g] = \int [\Pi + M_0]_{ab}^{-1} L_+^a L_-^b, \qquad L_{\pm} = g^{-1} \partial_{\pm} g,$$

for M_0 constant $d \times d$ invertible matrix.

Amazingly two such sigma models are related by a "canonical transformation" [Sfetsos 97]

$$P = \widetilde{\Pi}\widetilde{P} + \widetilde{L}_{\sigma}, \qquad \widetilde{P} = \Pi P + L_{\sigma}, \qquad (L_{\sigma} = g^{-1}\partial_{\sigma}g, \quad \widetilde{L}_{\sigma} = \widetilde{g}^{-1}\partial_{\sigma}\widetilde{g}.)$$

For $\mathbb{D} = T^{2d}$, $\Pi = \widetilde{\Pi} = \widetilde{f} = \cdots = 0$, $L_{\sigma} = \partial_{\sigma} X$, and we recover abelian T-duality.

PL duality obviously allows topology change when the groups are different manifolds:

Example

$$\mathbb{D} = \mathrm{SL}(2; \mathbb{C}), \ G = \mathrm{SU}(2) \cong S^3, \text{ and } \widetilde{G} = \left\{ \begin{pmatrix} \lambda & z \\ 0 & \lambda^{-1} \end{pmatrix} \middle| \lambda > 0, z \in \mathbb{C} \right\};$$

more generaly $\mathbb{D} = G_{\mathbb{C}}$ for compact simple G is an example.

What about changes in the global fibration structure like in (topological) T-duality?

We did PL duality **with spectators** between e.g. trivial and non-trivial bundles. On top of PL group/Drinfeld double structure on fibres, we invoked **bibundle structure**.

Change of topology:	fibre	global bundle
Topological T–duality	NO	YES
Poisson-Lie duality	YES	NO
PL 'bibundle' duality	YES	YES

Top-down perspective: starting point is a principal **left** $\mathbb D$ bundle $\mathbb M$ with connection A

$$\mathbb{D} \hookrightarrow \mathbb{M} \xrightarrow{\pi} B, \qquad \mathbb{A} = d \operatorname{gg}^{-1} + \operatorname{g\underline{A}} \operatorname{g}^{-1}$$

and *H*-flux involving a Chern-Simons term for \mathbb{A} and a basic form *h* on *B*:

$$\mathbb{H} = \eta(\mathbb{A}\mathrm{d}\mathbb{A} + \mathbb{A}^3) + \pi^\star h\,, \qquad \mathrm{d}\mathbb{H} = 0 \iff \mathrm{d}h = \eta(\mathbb{F}\wedge\mathbb{F})\,.$$

Quotients \mathbb{M}/\widetilde{G} and \mathbb{M}/G should be PLT-dual, since $\mathbb{D}/\widetilde{G} = G$, $\mathbb{D}/G = \widetilde{G}$.

H-flux?

We expect (from abelian duality) H-flux on $\mathbb M$ is cohomologous to $\mathbb M/ ilde G\dots$

Indeed: for $\mathbb{D} = \mathcal{T}^{2d}$, split $\mathbb{A} = A + \widetilde{A}$, so the *H* flux on \mathbb{M} becomes

$$\eta(\mathbb{A}d\mathbb{A}) = \widetilde{A}dA + Ad\widetilde{A} = d(A\widetilde{A}) + 2Ad\widetilde{A} \sim 2A\widetilde{F}$$

 $A\widetilde{F}$ is $\widetilde{G} = T^d$ -invariant and horizontal $\implies A \wedge \widetilde{F}$ descends to \mathbb{M}/\widetilde{G} .

Essential nonabelian difficulty

For nonabelian \mathbb{D} , the factorisation $\mathbb{D} \ni g = \tilde{g}g$ is noncommutative. So **left** \tilde{G} cosets do not inherit the obvious **left** G action, even though $\mathbb{D}/\tilde{G} \cong G$.

We take a leap of faith and demand a **right** action of $\mathbb D$ on $\mathbb M$ alongside the **left** one:

Definition (Principal Bibundle [Breen 90, Aschieri Cantini Jurčo 03, Murray Roberts Stevenson 12])

A principal bundle $G \hookrightarrow M \twoheadrightarrow B$ for a left G action \triangleright on M is a **principal bibundle** if it is a bundle for a right G action \triangleleft , and **both actions commute and have the same fibres**.

Example (Abelian bibundles)

All principal bundles with abelian structure group are bibundles.

Can understand instead as a **left** bundle equipped with a **structure map** $a: M \to Aut(G)$ that writes the right action on some point $m \in M$ as a left one:

$$m \triangleleft g = a[m](g) \triangleright m$$

a is equivariant — morally, a generalisation of the adjoint action $G \rightarrow G$ to a G-bundle.

a(F) is gauge-invariant even if F is a nonabelian field strength...

If \mathbb{M} were a \tilde{G} -bibundle, we could write $A \wedge \tilde{a}(\tilde{F})$ for the reduced *H*-flux (on \mathbb{M}/\tilde{G}). **Topological conditions?**

Definition (Topological factorisation condition)

Structure group of the principal \mathbb{D} bundle \mathbb{M} reduces to $Z(G) \cap Z(\mathbb{D}) \times Z(\widetilde{G}) \cap Z(\mathbb{D})$.

Then \mathbb{M} has G, \tilde{G}, \mathbb{D} -bibundle structures! The structure map $a : \mathbb{M} \to \operatorname{Aut}(\mathbb{D})$ factorises as $a = a\tilde{a}$ — compare $g = \tilde{g}g \implies \operatorname{Ad}(g) = \operatorname{Ad}(\tilde{g})\operatorname{Ad}(g)$.

Example

$$\mathbb{D} = \mathrm{SL}(2;\mathbb{C}), \ G = \mathrm{SU}(2) \cong S^3, \text{ and } \widetilde{G} = \left\{ \begin{pmatrix} \lambda & z \\ 0 & \lambda^{-1} \end{pmatrix} \middle| \lambda > 0, z \in \mathbb{C} \right\}. \ Z(G) = \mathbb{Z}_2,$$
$$Z(\widetilde{G}) = 1 \implies \text{ non-trivial } \mathrm{SU}(2) \text{-bundles dualise to trivial } \widetilde{G} \text{ ones!}$$

What do we mean by duality in this context?

- Worldsheet: 'canonical transfs'/symplectic reductions in string phase space
- **•** Target-space: *idem* in certain symplectic L_2 -algebroids \cong QP manifolds

 \mathbb{Z} -graded manifolds \mathcal{M} (contrast 'super' = \mathbb{Z}_2 -graded) with symPlectic form and compatible odd ('fermionic') vector field Q with $Q^2 = 0$.

Example

BV formalism: ∞ -dim QP mfold (with symplectic form of degree -1).

We just need $\mathcal{M}_M = T^*[2]T[1]M$. Darboux coordinates:

$$rac{ ext{coord} \quad x^{\mu} \quad \psi^{\mu} \quad \chi_{\mu} \quad p_{\mu}}{ ext{deg} \quad 0 \quad 1 \quad 1 \quad 2} \qquad \{x^{\mu}, p_{
u}\} = \{\psi^{\mu}, \chi_{
u}\} = \delta^{\mu}_{
u} \, .$$

and Q-structure

$$Q = \mathrm{d}_{\mathsf{e} \ \mathsf{Rham}} + \left\{ H(x)_{\mu\nu\rho} \psi^{\mu} \psi^{\nu} \psi^{\rho} \,, \bullet \right\}, \qquad Q^2 = \mathsf{0} \iff \mathrm{d} H = \mathsf{0} \,,$$

for $H \in \Omega^3(M)$ the H-flux. These are classified by the de Rham class of H.

Our result: *dg-symplectic reduction* given a \mathbb{D} bibundle as above.

For \mathbb{M} to \mathbb{M}/\widetilde{G} reduction, the \mathbb{D} -connection \mathbb{A} on \mathbb{M} produces

- an honest connection \widetilde{A} for \widetilde{G}
- ▶ a *G*-connection-like object r^{∇} (g-valued 1-form on \mathbb{M}/\widetilde{G}).

We found a formula for the H-flux (which is also the one for dual H-flux if we trade $G \leftrightarrow \widetilde{G}$)

$$H = r^{
abla} \wedge r^{
abla} \wedge \widetilde{\underline{A}} + r^{
abla} \wedge \widetilde{a}(\widetilde{F}) + (ext{spectator flux}).$$

 $r^{
abla}$ is an honest connection whenever \widetilde{G} is abelian!



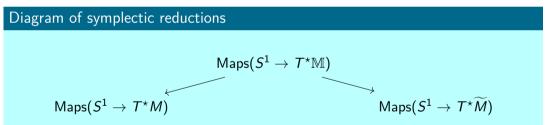
On topology change in Poisson-Lie T-duality

Worldsheet picture

There is a correspondence between Courants and string phase spaces [Alekseev Strobl 05]

exact Courant algebroids $[(T \oplus T^*)M, H] \leftrightarrow \mathsf{Maps}(S^1 \to T^*M)$

This was later generalised to a **QP mfold/brane phase space correspondence** [ASA 21], convenient language for us. (In principle known to Pavol Ševera.)



whence a lagr. correspondence between $T^*\mathcal{L}M = Maps(S^1 \to T^*M)$ and $T^*\mathcal{L}\widetilde{M}$.

At the top we have the phase space of a doubled string (4d coordinates total)!

Summary/remarks

We produced some new examples of topology change, namely ones in Poisson-Lie T-duality with spectators. Duality via (dg-) symplectic reductions of the associated exact Courant algebroids/QP-manifolds, that produce symplectic reductions of the string sigma models.

In our setup, duality sends a principal **bibundle** (obeying 'topological factorisation')

 $G \hookrightarrow M \twoheadrightarrow B$ (*G* is a (nonabelian) Poisson-Lie group)

to another such \widetilde{M} whose fibre \widetilde{G} is the PL dual group.

- 1. The strange r^{∇} connection-esque 1-form looks suspiciously like a 2-connection [Aschieri Cantini Jurčo 03]? CS terms for such? Relation to non-abelian gerbes?
- 2. We have a Hori formula (transformation of RR fluxes). Lift to K(K)-theory? Perhaps as a *(non)commutative correspondence* [Brodzki, Mathai, Rosenberg, Szabo 07]
- 3. Can do the same dance for M-theory: we know the QP targets [ASA 18, ASA Malek Tennyson 22] corresponding to M- and D-branes. **Topology change in U-duality**?

Thank you!